Planar Surface Tracking
and its Applications

SIMON GUSTAFSSON ﬁ

By,
FKTHE

VETENSKAP
39 OCH KONST 9%

SN

KTH Computer Science
and Communication

Master of Science Thesis
Stockholm, Sweden 2007

Planar Surface Tracking
and its Applications

SIMON GUSTAFSSON

Master’s Thesis in Computer Science (20 credits)
at the School of Electrical Engineering

Royal Institute of Technology year 2007
Supervisor at CSC was Danica Kragic

Examiner was Jan-Olof Eklundh

TRITA-CSC-E 2007:096
ISRN-KTH/CSC/E--07/096--SE
ISSN-1653-5715

Royal Institute of Technology
School of Computer Science and Communication

KTH CSC
SE-100 44 Stockholm, Sweden

URL: www.csc.kth.se

Abstract

In the field of computer vision, a large number of area trackers have deei-
oped. Their general purpose is to track planar surfaces. Theiessicepends on
the amount of suitable features present in the surface, but they cabealisoited
by variations in illumination as well as by distortions of the surface in other ways
then the tracker was designed to follow.

This work compares a selection of implemented area trackers against each
other. The first category of compared trackers is limited to tracking transkatio
A second category with first order optical flow trackers were also impléaten
and their capabilities of tracking more complex planar transformations was-inve
tigated.

This thesis shows how to derive and implement a number of simpler trackers,
as well as show certain applications where a number of trackers haveperate
to achieve common goals. One of those applications shows how certain objects
(in this case boxes) can be tracked by grouping a number of trackezthewg
Other applications include a tracker that can track severe perspedsizetion
of planar surfaces using trackers capable of only following affinesttamations.
Yet another application tracked stars in over 100 pictures of the nightyséstly
reducing the noise by cancelling the motion of the stars before summing all images
together.

Fo6ljning av plana ytor samt relaterade applikationer

Sammanfattning

| exjobbet anvands flera datorseendemetoder for foljning av ytor @&ktoblang-
den sardrag pa den foljda ytan bestammer hur bra de presterar, menrytddan
ocksa begransas av andra faktorer som belysningsvariationer &amétrfgningar
av annan art an foéljaren var avsedd for.

Detta arbete jamfor ett urval implementerade ytféljare mot varandra. Dels jam-
fors foljare som enbart kan hantera translationer, och dels sa janiffaefsom ar
baserade pa forsta ordningens optiskt flode. De senares formadmnsata kom-
plexa modeller for den foljda ytan testas ocksa i praktiken.

Detta examensarbete visar utférligt hur man harleder och implementerar ett an
tal enkla foljare baserade pa optiskt flode, samt presenterar ett aptidagioner
dar foljare maste samarbeta for att nd gemensamma mal. En av applikationerna
visar hur en box skulle kunna féljas genom att anvanda sex féljarenEaneap-
plikation demonstrerar hur perspektivféljning kan géras med en grupgrédsom
ensamma enbart klarar affin foljning. En ytterligare applikation demonsthera
bilder av natthimlen kan géras mindre brusiga, om stjarnornas rorelse i Bgdma
sekventiella bilder detekteras och kompenseras innan bilderna slas ihop.

Preface

The goal of this project has been revised since it was started. The ariyial

was to develop trackers and feature detectors for simple features slioksand
patches mainly in a two-dimensional setting, and then participate in the develop-
ment of a Human Machine Collaborative System (HMCS).

The intended HMCS would have been a system where a user’s ability to per-
form certain tasks could be improved by letting a robot and a user shasathe
physical tool. The tool would be equipped with sensors measuring the fqre
plied by the user. The measured forces together with visual input froame @
fixated on the tool could then be filtered, possibly enhancing force asasion
while reducing the amount of tremor of the human operator. The visual vianpuid
mainly be used to determine if the user tried to follow certain types of featunds, a
the system could then apply virtual fixtures to enhance the user’s pefare at
certain tasks.

Other people were going to contribute with software for a human-machine con-
trol framework. It would include capabilities of using the force senstiexhed to
the tool, as well as doing the actual path planning for the robot using osijiqro
and pose of the tool as input. Evaluation of different virtual fixturesober con-
trol laws) as well as automated classification of the user’s desired actamalso
determined to be outside the scope of my work.

My part of the project was only focused on computer vision, and on iategr
ing that with the HMCS system, as well as evaluating the performance increase
expected when visual feedback was available to the HMCS system.

Unfortunately, the robot available for this project had broken dowrmteeit
was time to start working with the HMCS system, so that part of the work could
never begin. After some time without the ability to work on the HMCS system,
| started attaining regular courses. That meant almost completely postpbeing
thesis for half a year. After that, | worked on the parts that | considasethost
interesting, including different area trackers as well as some usedel foo vision-
related applications.

When meeting my supervisor in November 2006, she recognised that a lot of
work had been put in the area tracking department, and we selected ana¢w fi
goal for the thesis. The goal involved making a simple prototype systenbleapa
of tracking boxes. The only requirements on the boxes was that their dionens
should be known, and that its sides should contain enough features toalimal
flow trackers to track any of the sides of the box.

This work will be made available at: http://www.simong.se/papers.

Contents

1 Introduction 1
1.1 AGeneral TrackingSystem. 1
1.2 ProjectGoals 2
1.3 Outline 2
2 Area Tracking 4
21 SSDTracking 4
2.2 Short-circuited SSD Tracking 4
2.3 Optical Flow Tracking 5
2.4 ISSUES e e 6
2.4.1 Selection of Good Featuresto Track 7
2.4.2 Preprocessing v it 9
3 Post Processing 11
3.1 Prediction 11
3.1.1 LinearPrediction 11
3.2 Clustering e 12
3.2.1 Clustering and Isometry Transformations 12
3.2.2 Clustering and Similarity Transformations 12
3.2.3 Clustering and Affine Transformations 13
3.2.4 Clustering and Perspective Transformations 14
4 Plane Tracking in Three Dimensions 15
4.1 Coordinate Systems e 15
4.2 RetrievingPoseofPlane 15
4.2.1 Solving Pose by Knowing Tracker's Homography 17
4.2.2 Solving Pose by Knowing Corner Points 17
4.3 Post-processing the Solution 18
4.3.1 BuildingaValid Solution. 18
4.3.2 MinimizingErrors o oo 19
4.4 An Alternative Way to Track the Pose ofaPlane. 19
5 Tracking of a 3D-box 21
51 BoxModel 21
5.2 Individual Trackers 22

5.3 TrackerHandover 22

5.4 DIiSCUSSION v v o e e e e e 23

Implementation 24
6.1 ImageandVideo, 24
6.1.1 Text e 24
6.1.2 Line....... 25
6.1.3 Slmage 25
6.1.4 VideoSource 25
6.1.5 VideoSink. oo 26
6.1.6 GrabberThread 26
6.1.7 MyScheduler 27
6.2 Feature Detectors 27
6.2.1 HoughTransform 27
6.3 Trackingand Clustering. 27
6.3.1 LineTracker., 27
6.3.2 SSDSlowTracker 28
6.3.3 SSDShortCircuitTracker 28
6.3.4 FlowTrackerCore 28
6.3.5 FlowTracker 29
6.3.6 PerspectiveTracker 29
6.4 TiMING. e 29
6.41 RTC. 29
6.42 Stopwatch., 30
6.4.3 MeasureCycles, 31
6.5 NCuUrses e 32
6.5.1 OutputWrapper 32
6.5.2 OutputStreambuf 33
6.5.3 NCursesUser 33
654 NCursesClass 34
6.6 Additional SupportingClasses 34
6.6.1 ArgumentParser, 34
6.6.2 MFileReader 35
6.6.3 MFileWriter 36
6.6.4 MY_CTRLC_TRAPPER. 37
6.7 DeprecatedClasses, 37
6.71 SMatrix e 37
6.7.2 SSDFlowTracker 38
6.7.3 SSDFlowTrackerRect 38
6.7.4 ClusterPoints, 39
Experimental Evaluation 40
7.1 Evaluationof AreaTrackers 40
7.1.1 TimeConsumption 40
7.1.2 Deviation from Expected Position 42
7.1.3 StepResponse e 42
7.1.4 Extension of Range for Optical Flow Trackers. 43

7.1.5 Behaviour at Different Tracking Speeds 44

7.2 Applications. 46

7.2.1 StarPhotography 46
7.2.2 lterative Tracking, . 47
7.2.3 Tracking of Three Dimensional Boxes 48
8 Conclusions 50
8.1 RegardingAreaTrackers 50
8.2 Regarding Clustered Perspective Trackers
8.3 Regarding Star Photography 51
8.4 Regarding Tracking of Three Dimensional Boxes 51
8.5 Regarding Line Tracking and Detection 51
Bibliography 53
A Affine Approximations of Projective Transformations 55
B Decomposition of a Projective Transformation 57
C Optical Flow Estimation 59
C.1 Tracking Translations 60
C.2 Tracking Affine Transformations 62
C.3 Tracking Affine Transformations (two step approach) 65
C.4 Tracking Perspective Transformations 68
C.5 |Intuitive Description o oo 71
D Notes about NOMAN 76
D.1 ImageShow2 76
D.2 CASMatrix e 76
D.2.1 Multiplication. 77
D.2.2 TemporaryObjects 77
D.2.3 Using Optimised Libraries 78
D.2.4 OptimisationFlag 79
D.3 Resolving Compilation Issues withgcc 4.4.1and FC6 79
D.3.1 libMath.so 79
D.3.2 SELInUX 79
D.3.3 V4lL2Grabber L 79
E Line Tracking and Detection 81
E.1 LineTracking 81
E.1.1 EdgeTracking 81
E.1.2 Investigated Improvements 84
E.2 Line Detection —Hough Transform 87

E.21 Using8x8Patches 87

Chapter 1

Introduction

Feature detection and tracking are two interesting fields in computer visiay. Th
are both used in a wide range of applications. One group of such apphisaty

on trackers to determine an optical flow field. That flow field can then bd use
for motion detection, video compression, video stabilization, and in some cases
even for three-dimensional reconstruction of objects. Other groupppications
include human machine collaboration, vehicle tracking (both in traffic surneifla

and for platooning), as well as general tracking of planes.

1.1 A General Tracking System

A general tracking system uses saved sequences or input frotimmealideo as the
source of frames to process. The system could either perform ofkéngateration
for each tracker in each frame, or use more sophisticated ways to delvelaen
to run its different trackers. Which features to track could either getraéted
automatically (by feature detection), or manually by selection of featuresdk. tra

Initialise

|

Estimate Update

Figure 1.1: A general tracking system.

The tracking system would undergo the states depicted in figure 1.1. Ktis fir
initialised either manually by specifying features to track, or automatically by de-
tecting features in the first frame. Then all trackers in the system aréequer
estimate the new parameters of their tracked features. That estimation usually r
lies on assumptions about the tracked object, most commonly that the objddt wou

1. Introduction

retain its shape and appearance. This description do not apply fonsysthere
features are not tracked, but rather detected in the entire frame forfreace, and
then correlated to features detected in the previous frame. The third step in th
image is to update the parameters of each tracker using the estimated valges. Sin
both previous as well as current estimations of all tracked featuresiaverk they

can all be allowed to interact. As an optional step, new features could alde-b
tected regularly, but depending on the application, detection of new ésatoight

be skipped.

1.2 Project Goals

Most of the effort in this work has been put into examining and experimemntitig
area trackers, even though line tracking and detection has been settitasefly
as well. Two main groups of area trackers have been investigated:latimmne
based trackers, and optical flow trackers. The correlation basexdveere limited
to tracking translations, while separate optical flow trackers were cansttior
tracking of several different motion models.

This thesis also presents certain applications where a number of traedrs h
to cooperate to achieve common goals. One of those applications showhow c
tain objects (in this case boxes) can be tracked by grouping a numbeckérsa
together. Other applications include a tracker that can track severpeptve
distortion of planar surfaces using trackers capable of only followifigeafrans-
formations. Yet another application tracked stars in over 100 picturesafitfint
sky, greatly reducing the noise by cancelling the motion of the stars and summing
all images together.

During the course of this work, several support classes has beetoged as
well. They include classes for simulating a real time video source using saved
sequences, classes simplifying the use of NCURSES, a command line atgumen
parser, and several other reusable components.

1.3 Outline

Chapter 2 describes how correlation based SSD trackers work, atain®a brief
overview of optical flow tracking. That chapter also discusses theegsoaf deter-
mining good features to track, and finishes with two methods to combat illumina-
tion changes, which can have negative impact on optical flow trackdrapt€r 3
discusses prediction, as well as clustering of trackers, and demossteatiing of
perspective transformations using a group of affine trackers.

Chapter 4 describes how knowledge about the camera and the tragket ob
can be used to retrieve the pose of a tracked plane, and it also intragpossibly
novel method to restrict the trackers movement to perspective transformeatip
the same time as the trackers state contains the pose of the tracked plarter &hap
explains how the pose of a box can be tracked by knowing the dimensidghe of
box and the internal camera parameters.

Chapter 6 briefly describes some of the developed C++ classes, whichbrigh
useful in other projects, and Chapter 7 begins with evaluation of tracikedsends

2

1. Introduction

with evaluation of certain applications. The applications include “Star phatogr
phy”, “Iterative tracking” and “Tracking of three dimensional boxe€hapter 8
finally contain the conclusions of this thesis.

Appendix A contain relationships between affine and perspective tianafions,
and appendix B shows how to decompose a projective transformationt isTha
followed by appendix C, which shows how to mathematically derive sevptialad
flow trackers, and also contains a separate more intuitive descriptionicajow
trackers.

Appendix D suggests some changes and improvements to NOMAN, and ap-
pendix E contains some work on line tracking and detection.

Chapter 2

Area Tracking

Area tracking is the process of tracking a specified area of an image $seguént
frames. Theconstant brightness assumptimnthe most important assumption for
many types of area trackers. It states that the brightness of any partratked
patch will remain constant during tracking, and that only the positions ofdiregg
can change. A measure of deviation from the constant brightness assutiop
two aligned images is the sum of squared differences (SSD). The SShékteq
0 for identical images, and gets higher the more different the images becomes.

SSD = Z (Il(a:,y)—lg(:zr,y))Q (21)

all z,y in patch

Where I; and I, denotes two separate images. This SSD equation can be used
directly for tracking as in section 2.1 and 2.2. The SSD Equation can alssduke u

to develop more complicated tracking algorithms, such as the one described in
section 2.3.

2.1 SSD Tracking

To perform basic SSD Tracking, one has to determine some possible la&cation
of the tracked area in the image. Then the SSD is calculated for each of those
possible locations. The simplest scheme for choosing candidate locationssis to
all locations within a specified radius of the trackers last position. The lotatio
with the best correlation (lowest SSD) is then assumed to be the location of the
tracked area.

The most striking disadvantage with this method is that it is computationally
expensive. It also lacks the ability of tracking objects which are rotatestaled
without much more extra effort.

2.2 Short-circuited SSD Tracking

One way of improving the performance of SSD tracking is to reduce the amoun
of unnecessary computations. One useful method for that is called laop sh
circuiting[3]. It involves aborting computation of SSD:s when they get latigan

2. Area Tracking

some previously calculated SSD. Since the lowest SSD corresponds testiesh
timation of the position, continued evaluation of SSD:s whose sum alreadgads<ce
the previously lowest SSD is just a waste of time.

When calculating these SSD:s, it has been shown that the order in which the
SSD:s are evaluated in gets important, as well as the order of the pixels idiolve
each sum.

2.3 Optical Flow Tracking

Optical flow trackers[10][9] provide a much faster way to track patdhes the

other trackers described in this paper. An optical flow tracker wouldhage to
calculate all possible SSD values for all possible displacements. Insteaulld

solve an equation system to directly estimate the movement of the tracked patch.
The equation system could very easily be derived to allow tracking of masbmo
models, from translations up to arbitrary homographi@ptical flow trackers for
several common motion models are derived in appendix C.

To achieve the high performance associated with optical flow trackeng the
are a number of simplifications in their equation systems. The benefit of that is
that most values can be precomputed before the tracker is used, makikigdra
a very fast operation. The drawback is that the simplifications make theetrack
more sensitive to illumination variations, as well as decrease the trackaigie t@an
the subpixel range. Solutions to reduce the influence of illumination chaarges
discussed in section 2.4.2, and the solution that would increase the tracdadpe
is simply to downscafeimages during tracking. When the tracked image is down-
scaled, the precision of the optical flow tracker is reduced. To maintairritjieal
resolution, tracking could be committed by first tracking using strong doslimgg;
and then repeatedly track with a successively reduced amount of dalivits It
should be noted that the accuracy of optical flow trackers is much higbertkie
accuracy achieved by the trackers in sections 2.1 - 2.2, and when omyattians
are tracked, a downscaling by the factor of two or four gives comparakults.

For optical flow trackers, the two most important coordinate systems are the
coordinate system used by the camera, and the coordinate system deteace
patch used by the tracker. As one tracker might use several reéepantches with
different amount of downscaling, there are even more coordinatensgsteplay.

An overview of the tracking process focused at the actions in differeat-
dinate systems is depicted in figure 2.1. The homographies specified foceac
ordinate system shows the relationship to the rectified reference imagevhsad
initialising the tracker. To the left in the image is the camera coordinate system,
and the homography? (which directly relates the pixels camera coordinates and
rectified coordinates) completely describes the current state of the tiaokem-
bination with the width and height of the rectified but not scaled image. The image
from the camera is rectified and downscaled by the transformdfioh, where
Q) depends on the amount of downscaling. If the deviations between thenmeée

Use of homographies and homogeneous coordinates allow all cordinasformations used
within this thesis to be described as matrix multiplications. Refer to [7] for details
2Downscaling by the factat would imply that only every: pixel is used in any direction.

2. Area Tracking

and the current rectified and downscaled image is in the sub pixel ravigmgsthe
optical flow equation system yields the error estim@@& M/, which simply cor-

rects the homography in the rectified and downscaled coordinate systetheif
parameters than a homography is used for the motion model, its corresponding
homography must be constructed from the estimated error. Finally, thectedr
homography has to be transformed into camera coordinates to get the tewfsta
the tracked patch.

Camera | | Rectified but | ' Rectified and
coordinates | | notscaled | ' downscaled
! 1		
H 7 Qx	.	
homo.=H “~ ~ homo.=I > homo.=Q estimate		
! o ____ i	Werror	
! I		
! I		
	QAM	
‘ ! / correct
new homo. ! | homo.
- l | - error
= \// —
! I
H(I+AM) HQ L+ - QU+ AM)

Figure 2.1: Tracking process overview showing all coordinate systanstorma-
tions used by an optical flow tracker.

2.4 Issues

A small note is made here about prediction and downscaling, and the following
subsections discuss selection of good features to track (2.4.1), asswekb@ro-
cessing of images to remove flickering (2.4.2).

When tracking fast movements, or tracking is computationally expensige, pr
diction and downscaling can be useful. Firstly, prediction can acquirer keesitie
mates of the current tracker state as described in section 3.1. This makssililp
to use a smaller candidate area in algorithms trying out possible matching positions
one by one.

Secondly, downscaling is essential together with optical flow, as optical flo
tracking only works reliably for movements in the sub-pixel range. Scalieg th
image down by for instance the factor 2 would mean that only every sedred p
is used by the tracker in both x and y directions. That means that the motioa of th
tracked patch as seen by the tracker would he halved. Downscalingedlstes the
amount of computations. Scaling the image down by the factor 2 would only pass
every fourth pixel of the original image to the tracking algorithm, therebyngav
75% of the computation time in algorithms which scale linearly with the number
of used pixels.

2. Area Tracking

2.4.1 Selection of Good Features to Track

Selection of good features to track is important but not easy. The most commo
ideas seem to focus at determining when translational motion can be traitked w
out stumbling against the apertdgroblem. Two papers addressing this issue with
the basis of eigenvalues are [15] and [12]. They both analyse the

Ty _ I} Iy
=X 7

matrix that is used in optical flow tracking. The description in [15] talks about
eigenvalues of thel”A matrix in the context of solving linear equation systems.
They basically say that the eigenvalues must be larger then some minimum value
(dependent on image noise), and that the matfi should be well conditioned to
make the equation system used while tracking solvable. Eigenvalues djffgrin
several orders of magnitude would break the conditioning requiremeniasinot
handled anyway in [15]. They considered the largest eigenvaluelwaxlbd since
the bounded pixel values in the patch could not generate arbitrary lge@alues.

The description in [12] talks about the samiéA matrix, but they obtained
that matrix by disregarding all temporal differences that could be coresidehen
moving from equation (C.2) to equation (C.7) (both in appendix C). Theirltres

was A
T T

ERR C%‘j{([Az Ay]AA[Ay Dw
which gives approximate deviation from the constant brightness assuniption
displacement\z and Ay. The description in [12] talks about the eigenvalues
of ATA in the context of analysing another simple corner detector. They had two
points especially worth noting. Firstly, a contrast increaseplwould increase
the eigenvalues by?, which have to be taken into consideration depending on
preprocessing (section 2.4.2). Secondly, it was possible to use thdsstithout
explicitly calculating the eigenvalues. To be able to do that, the trace and the
determinant ofA”A should be considered:

Tr(ATA) =M+ X =) I2+> I

Det(ATA) =X =) LT - I,

and then thresholding of trackable corner regions would be performetieore-
sponse

R = Det — k Tr? (2.2)
where negative values of R corresponds to edge regions, and positives to
corner regions that are easy to track. Flat regions are detected shofaleng7'r,
the sum of both eigenvalues.

A comparison between the threshold strategies in the two papers can be seen

figure 2.2. The only practical difference is that [15] disregards thelitimning of
the matrix based on their practical experience, while [12] keeps thairezgent.

The aperture problem occurs when the tracked patch contains too littleniafion to allow
tracking in bothz andy direction. The patch could be uniform, or contain edges in one direction
only.

2. Area Tracking

6 r
(%]
c
5 /g S
[@2]
o o
44 corner regions 4 I} corner regions
e}
()
)\23)\2
4
2r] g)\min
1
. O . .
1 Hjat region i3 flat regions edge regions
/eneg/ 3
O 1 1 /u-s O
0 1 2 3 4 5 6 0 Amin
)\1 /\1

(a) Thresholding of eigenvalues as performed (b) Thresholding of eigenvalues as performed
by [12]. Iso-contour lines of equation (2.2) for by [15].
k=0.15 are drawn.

Figure 2.2: Feature thresholding based on eigenvalues. The main differis
that 2.2(b) disregards the conditioning of the matrix based on practiqaeance,
while 2.2(a) keeps that requirement.

The additional possibility of adding a cornerity constraint to prefer festur
with many corners and curves is mentioned in [14], which would be highlefden
cial for trackers not restricted to translational movements.

Unfortunately, the process of determining the thresholds used for determin
ing if an area could be tracked is not straightforward. First of all, anigkteng
should be incorporated when calculating the eigenvalues used fordfdesh and
preprocessing affecting the contrast of the image would have to be leftrde
compensated for, as that changes the eigenvalues.

Another problem was that normalization of eigenvalues of different &esck
with different sizes was not straightforward, possibly making it necgdsare-
trieve customized thresholds for all tracker sizes that would be usedmgoy
applications, the size of automatically detected regions is predeterminednignd o
the initial problem of setting thresholds for fixed size trackers would havgeto
solved.

The attempted method of determining the thresholds for fixed size trackers was
to simulate translational motion of an image while tracking many regions within
it. The length of displacement was increased for each frame, and th¢ialire¢
displacement was also changed wisely. Unidirectional displacement cisédyf
benefit regions containing edges, and erratic changes in displacemertioth
could give zero mean displacement between neighbouring frames, makasg it
demanding for the tracker.

Under those conditions, it would be possible to harvest “survival timeghdd
as the number of frames before a tracker deviated from its supposéibipdsy
more then some small constant. The “survival times” would corresponctljite
the suitability of tracking the tracker’s associated patch.

The result of such experiments resulted in eigenvalues and “survivag'time
for a large number of trackers. When those data were evaluated, treultyffof

2. Area Tracking

selecting appropriate thresholds for eigenvalues became evident. Esbadlhds,
which would correctly identify almost all good trackers was also letting 086 2
of the worst trackers pass as good ones. When setting the thresholdthatall

the worst trackers were blocked, many of the best trackers werestetteéd at all
instead.

Discussion

The conclusion of my experiments is that it is possible to calculate eigenvalue
thresholds for classifying patches as trackable. The drawbacksarsuith classi-
fication sometimes makes mistakes, and that the thresholds have to be determined
individually for each size of the tracked patches. For fixed size pattheperfor-

mance can be considered adequate in most cases.

Whenever possible, | suggest that other means should be used as fiall to
trackable patches. One such example would be background subtratstatio
scenes with few moving objects, where traffic surveillance serves asaanpée.
Another approach would be to “try out” trackers for a specified numbé&ames
before acknowledging them as good trackers.

2.4.2 Preprocessing

Preprocessing of images before feeding them to different trackersftan be a
useful tool. For instance, using gradient images or laplacian of imagesdhste
of the regular images can remove some of the influences from reflectibns, a
though the impact of high frequency noise makes that less suitable for horma
image sequences[14].

Another possible task for preprocessing is to remove effects of flicaieifin
mination between frames. Two methods, which does that has been testdde and
results can bee seen in image 2.3. The first method was derived afteviogse
few histograms of a sequence of flickering frames: it was apparent itiegrfin
the illumination affected the image by multiplying all values in a frame by a factor
specific for that frame. That observation could be written as

C; * Iframe T = Iframe 0

This unknown factor; can be determined by forcing all mean intensities to the
mean intensity of the first frame.

1 1
Nzci*lframei = Nzlframe()

By multiplying all pixel values in an image by the easily determinafl¢he image
intensities will be much closer to the intensities in the first frame.

The used camera was however not acting according to the model foridine-br
est 15% of the histogram. Therefore, histogram equalizétiars also tested. The
decision to prefer histogram equalization over fixation of average was taker
considering the results in image 2.3(b). The behaviour of the currentraaahthe

“the histogram equalization used was using 16 bins, and linear interpolation

2. Area Tracking

highest intensities was just too inconsistent with the first model to allow it to be
used.

Flicker compensation could be applied either locally to the tracked patch, or
globally to the entire frame sent from the camera. Local flicker compensation
introduces an inability to track patches lacking higher frequency conteatarA
example, consider the imadéz, y) = ax + PBy. Histogram equalization for any
patches from that image would result in identical patches regardless watista-
tions in the image, thus making tracking impossible. Applying flicker compensa-
tion globally on the entire frame sent from the camera would be necessdlgvio a
patches lacking high frequency content to be tracked.

400 L] L] L] L] L]
7] © 400 | -
% 300 F 1 2 ;
2 , S 300 -
S 200} | - o i)
3 wor | 2 wof B -
0 i C o E 1 0 (1 3 %2, 1
0 50 100 150 200 250 0 50 100 150 200 250
Grey level Grey level

(a) Histograms of unprocessed images (b) When forcing constant mean intensity

Number of pixels

Grey level

(c) When using histogram equalization
Figure 2.3: Test results of flicker compensation in a movie. The plots iconta

75 histograms for 75 different frames, the camera was stationary, anthipet
consisted of 10 bars of different intensities.

10

Chapter 3

Post Processing

This chapter provides some information about possible post processihgéah
be applied to the results from tracking. First, the simple task of predictingefutur
positions of trackers is addressed. After that, some means to clustertrache
able to combine their results are described.

Another form of post processing can be seen in chapter 4 (pagevhgye
information from an optical flow tracker is used to retrieve the three-dimeasio
pose of a plane.

3.1 Prediction

Some trackers have trouble tracking fast moving objects. If the fast mobijegt's
acceleration is below some maximum level, prediction can be used to facilitate
tracking. The prediction would use old states of the tracker to predictdstiates.

The limit imposed on accelerations would then give a limit on the prediction error,
making it possible to determine how “far away” the tracker has to be able totsea
for the tracked object.

3.1.1 Linear Prediction

Linear prediction is one of the simplest forms of prediction. Linear prediaizes
the last and the current state of the tracker to estimate future states. Tioatmp
of linear prediction to coordinates is straightforward:

Xitr = X¢ + 7(Xp — X¢—1)

When applying linear prediction to affine parameters describing more cormglex r
lations, one out of two roads can be taken. The first solution is to use the sa
principle as above: the affine parameter matixan be updated using a differ-
ential matrix. This will however only work while the changes in the magiare
small (which they are going to be during optical flow tracking).

Arpr = A +7(Ar — A1)

The second solution for updating affine parameters is to extract a suiethté s
parameters from the affine matr&x. These parameters could then be predicted

11

3. Post Processing

separately, and then recombined into the predicted mAirix. This would give
better responses when there are large changéshiatween each tracking cycle.
The process of separating parameters for a projective transformatitasésibed

in appendix B, and that process can be simplified to handle less complex motion
models as well. As my implementation mostly relies on Optical Flow tracking of
slowly moving objects, | would not benefit from this second solution.

3.2 Clustering

It is possible to cluster trackers related by some measure by groupinglabedre
trackers. The process of clustering can add to the usefulness arilitgliaf the
tracking system. Trackers in each cluster would have to be processttid¢ogs a
group to improve the performance of the tracking system.

Obvious benefits of clustering would be that one could update the state of all
trackers in a group without having to run all individual trackers, as anfigw are
needed to determine the motion of the entire cluster. Another benefit wouldbe th
much more information would be available for predictors.

To determine which measure to group trackers according to, one firdbhas
determine an appropriate model of the trackers. When limiting the model to al-
low only translations and rotations, the measure used to group trackds lm®u
equidistance. Some reflections regarding the usefulness of clusteriagtmuple
of motion models are mentioned in the following sections.

3.2.1 Clustering and Isometry Transformations

Isometry transformations are transformations, which preserve eucldistamces,
and hence also angles and areas. Isometry transformations could tldg itnans-
lations and rotations. For isometries, equidistance would be an ideal méasure
clustering. Clustering could be implemented by calculating all distances between
all trackers after each frame. That would requjréN? — N) distances to be cal-
culated, whereV is the total number of trackers. The trackers whose distances
between each other never change more then some threshold would thiers-be ¢
tered in the same group.

Low-pass filtering of the distances between all trackers, and clustefrirapa-
ers whose distances never deviate more then a threshold from the lofiljeasd
distances would allow slow deviations from the equidistance condition. Allowing
for very slow deviations could for instance allow clusters to be presasved when
the patches are travelling along paths distorted by perspective or dastettion.

3.2.2 Clustering and Similarity Transformations

Similarity transformations are transformations allowing for translation, rotation,
and isotropic scaling. During similarity transformations, only angles betwees, lin
ratios of lengths, and ratios of areas are preserved. The propstovelyster track-
ers undergoing similarity transformations would be to use one of those int&ria
For IV trackers, there would bg (N* — 2N3 — N? + 2N) ratios of lengths to

12

3. Post Processing

calculate. For larger number of trackers, this would soon require too c@mypu-
tations to be practical (see table 3.1).

Table 3.1: relationship between number of trackers, and related nuofherique
lengths and length ratios.

trackers unigue lengths unigue length ratios

3 3 3

4 6 15

5 10 45
10 45 990
15 105 5460
20 190 17955

In many tracking applications, the tracked objects would not move fast dswar
or away from the camera. That means that the scaling that the trackedsobjec
are undergoing is very slow compared to translations and rotations of tietra
object. This makes it possible to cheat in some situations, by using equidistance
for clustering instead of ratio of lengths. That implementation could low-plss fi
the distances between all trackers, and cluster the trackers whosecdsgstaver
deviate more then a threshold from the low pass filtered distances. This would
allow trackers to slowly break the equidistance condition, without splitting up the
cluster. Clusters experiencing no distortion, or slow distortions, couldéée
handled as an isometry transformation instead.

3.2.3 Clustering and Affine Transformations

Individual trackers trying to track patches undergoing affine transéions re-
quires more information in the tracked patches then simpler trackers. Theepatc
sometimes contain less information then necessary to correctly follow the affine
transformations. If one would cluster some trackers undergoing the sfiime a
transformation, one would see that all trackers and the cluster of taekasld
undergo identical transformatiohs

This makes it possible to calculate the affine parameters for the cluster using
only centre positions of the trackers, and then pass those parametkrolibe
trackers constituting the cluster. It would then be possible to follow affimestoa-
mations using a few trackers, which by themselves only would be able to follow
similarity? transformations. If one would use trackers capable of following affine
transformations, their parameters and the group’s parameters coulddzk ibe-
lieve that the fusion would result in more accurate tracking then possible wtitho
cooperation between trackers.

!Different sub-regions of an affine transformation only differ in théspdacement parameter.
2A similarity can be decomposed into scaling, rotation, and translation.

13

3. Post Processing

3.2.4 Clustering and Perspective Transformations

Clustering of affine trackers can be used to get information aboutgeige trans-
formations. The main idea is that an affine transformation can approximate the
effect of a perspective transformation in a small area. Hence, seread affine
trackers can approximate the effects of a perspective transformateradarger
area. Approximation of a perspective transformation by an affine wamsttion is
mathematically described in appendix A.

A basic implementation would calculate the perspective transformation by
combining data from all individual affine trackers. Feedback fromwdated per-
spective parameters could then get passed back to the affine trackeeptdiverg-
ing trackers from drifting away. Figure 3.1 shows an area undergoimgsppctive
transformation, which was tracked using a cluster of affine trackers.

Figure 3.1: Perspective transformation tracked by a cluster of affinkénes

Preliminary Results

So far, the performance of a clustered perspective tracker utilising b aiesdfine
trackers seems to be very close to the performance of an optical flopgutirse
tracker. The most positive thing about the clustered perspective trackeat it
seems to converge slightly faster in each iteration than its optical flow coanterp
On the negative side, the clustered tracker is currently a little bit less reliable
then a single optical flow perspective tracker. To enhance the reliabifitrte
should be made to ensure that none of the small trackers gets an impossible job
(such as tracking something completely uniform). Weighting of affine tracdker
the cluster based on the reliability of each tracker could also lead to a reliability
improvement for the clustered tracker. Additionally, the reliability increadesnwv
an overlap is used between the affine trackers in the cluster, but on pleasex
of computation time. As the clustered tracker without overlap only savesipug
10% of computation time, | would suggest that clustered trackers wouldelot b
used as a replacement of optical flow perspective trackers.

14

Chapter 4

Plane Tracking in Three
Dimensions

The task of tracking a planar rectangular surface undergoing petigpéransfor-
mations has already been solved (see appendix C.4). The next step hveotdd
use knowledge about the tracked patch to determine its translation and rawation
three dimensional space. The approach described in [4] was usetiéeause of
its simplicity. It should be noted that better ways to estimate the pose exist]17][5
but they were not used. The only requirements for the method in [4] aréhthan-
ternal camera parameters as well as the dimension of the tracked rectgrajata
should be known. The Camera Calibration Toolbox for Ma@idB] was used to
estimate the internal camera parameters, as implementation of a camera calibration
algorithm was considered outside the scope of this work. The followintgossc
will outline how to estimate the pose of a tracked patch.

4.1 Coordinate Systems

The tracked rectangular patch in three dimensional space is shown ia fidi(g).
To simplify calculations later on, we assume that the patch lies in the XY-plane
(with Z-coordinates= 0). The(X;, Y;) coordinates in figure 4.1(a) are determined
by the physical dimensions of the tracked patch. The calculated pose oulltble
displacement from this initial pose.

Figure 4.1(b) shows the tracked patch as seen by the camera. Thescorne
(z;,y;) of the patch in image coordinates should be easy to retrieve from any area
tracker.

4.2 Retrieving Pose of Plane

To retrieve the pose of the rectangular planar patch, one has to lookratadkien-
ship between the real world coordinates and the image coordinates farrtiers

15

4. Plane Tracking in Three Dimensions

A =~
(xoéyo) (1‘1;)3/1)
(X(]a}/OaZO) ¢ ® (Xla}/lazl)
=y
G)

X3,Y3,73) © O (Xq9,Y5,Z
etz T et) (e3,9) (@2,90)

Plane at Z=0

Y Yy
(@) Tracked patch in the three- (b) Tracked patch in image coordi-
dimensional world

nates

Figure 4.1: Patch in real world, and as seen by the camera.

of the tracked patch:

x; Xi

1 .

s| vi | =KT }Z/Z
1 11

Where the camera matriK contains the internal camera parameters:

K =

o O R

b
d
0

_ o O

And T is the unknown transformation of the patch in the real world, and both the
image coordinates and the three dimensional coordinates are homogefiEmes.

we have set the Z-coordinate of the tracked patch to zero, the equatiea eduld
be rewritten:

XA
T le . Xi
S Yi = KR ot Ttrans OZ = ry r, t Y; (41)
1 X o\
]] 0 1 0 0 t,
. r, ro r3 0 . 010 ty
whereR,.,; = B andTy,.qns = 00 1 t
0O 0 0 1 00 0 1
Equation (4.1) could be further simplified by first multiplying it by the inverse
camera matri¥< !, thereby yielding:
x; i1 T2tz X
sl oy, | =] T2 T2 Uy Y; 4.2)
1 r3s1y T32 tz 1

16

4. Plane Tracking in Three Dimensions

where)
Z; ZT;
s|oy | =K' v (4.3)
1 1

Equation (4.2) is a homography mapping the planar patch (in three dimensional
space) into a patch in the;(, y;) coordinate system. The mostimportant part of that
mapping is, that the translation and parts of the rotation matrix can be determined
directly. The missing columins of the rotation matrix is also known, as it is the
cross product of the first two columns.

Solving for pose (three-dimensional rotation and translation) requiresdhe
mography matrix from equation (4.2), and it can be estimated in two separgse wa
Either by using the homography of a plane tracker, or by using cornetsof the
rectangular planar patch in both image coordinates and three dimensiandi-co
nates.

4.2.1 Solving Pose by Knowing Tracker's Homography

I would highly recommend calculating the pose of the rectangular planar patch
by using the homography of the tracker if available. Ensuring that compatible
coordinate systems are used in all parts of equation (4.2) would make the imatrix
that equation equivalent to the homography. That would mean that the hapinyg
commonly available from the tracker almost directly would give the pose of the
tracked object when multiplied biK—'. Some steps shown in section 4.3 should
however be applied to remove incorrect scaling and further inconsistemcthe
parameters.

4.2.2 Solving Pose by Knowing Corner Points

The pose of the plane can also be estimated when the corner points oftdre rec
gular planar patch in image coordinates and in three dimensional coordarates
known. The first step is to calculate the intermediate coordinafeg,j from the
image coordinates by using equation (4.3).

Then the homography can be calculated from the intermediate coordinates,
allowing the pose to be estimated directly. First observe that equation (4&ssh
that each corner point gives an equation system like this:

{ raXiw; + raYie; + ta;, — ruX; — Y — tp = (4.4)

raiXey; + reaYiy, + ty; — roX; — rY; — t, =

o O

Using all four corner points would generate eight equations with nineawmika. It
should be noted that the two columns from the rotation matrix are interdepgnden
making it possible to solve the equation system nevertheless.

The four corner points give four systems like (4.4) with a total of eightaequ

17

4. Plane Tracking in Three Dimensions

tions. They can be rewritten into the system (4.5):

— / / /- 12
—X1 —Y1 0 0 Xla:l Yl.’L'l —1 0 X1 ro1
0 0o -Xy -1 Xy, Yiyy 0 -1 wy oo

. 31 =0

-X, =Y, 0 0 Xuz, Yiz, -1 0 r32
0 0 -X4 Yy Xayy Yay, 0 -1 y,

8

t

ty

L 1z
(4.5)

This homogeneous system can be solved by performing a singular valoméde

position, where the singular vector corresponding to the smallest eigemnaite-

sponds to the correct solution. The solution yields the homography, whghems

to be approximately equal (except scaling) to the pose parameters of the pla

Some steps shown in section 4.3 should however be applied to remove atcorre

scaling and further inconsistencies in the parameters.

4.3 Post-processing the Solution

The solution yielding the camera’s position relative to the plane in the real world
have to be post processed to be of any value. As a start, the prodestur@] was
selected for constructing a valid solution and retrieving the full rotation matrix.
As a second step, the calculated pose of the box was improved by minimizing the
squared errors of the estimated patch corners.

4.3.1 Building a Valid Solution

The first step of post processing is to retrieve a valid solution. The stugided

in [4] are followed. The unknown scaling of the homography is removad,a
valid rotation matrix is constructed. To remove the unknown scaling, the solution
is scaled such that the two columns of the rotation vector yield unit lengthdgppr
imately).

length = /|[F1l[|r2]] (4.6)
r, = T11/length
T, = T/length
t = t/length

The second step before the solution could be considered valid is to éhatitbe
two calculated columns from the rotation matrix are perpendicular. This islopne
first calculating

- 7 !
ctr = Ty +7Ty

! !
PETD = T X Ty

18

4. Plane Tracking in Three Dimensions

dir = ctr x perp

o ctr %
S = I P
L @ dir
R e P

and then normalizin@'l' andf'z' again. Finally, the third column of the rotation
matrix is calculated as the cross product of the first two columns.

4.3.2 Minimizing Errors

Certain types of errors caused unwanted deviations in the solution yiejdtat b
procedure above. The deviations could be caused either by errore ootrdi-
nates in the 3D-world, by errors in the estimated screen coordinates dfithers

of the tracked patch, or by problems with the algorithm itself. The sum ofrequa
reprojectiort errors for the models 3D-points was selected for minimization. Min-
imizing that measure produced a sounder solution than the initial estimate. The
conjugate gradient method was chosen to do the minimization, because it con-
verged faster then the steepest descent method during practical use.

To be able to more effectively minimize the problem, six parameters for de-
termining the pose of the rectangular planar patch in the real world was igolate
Those parameters consisted of the three Euler angles describing tharotatiix,
and all three values of the translation vector.

4.4 An Alternative Way to Track the Pose of a Plane

Sections 4.2-4.3 described ways to recover pose information using a haphgyg
between certain three dimensional coordinates for the patch and the in@ge co
nates for the patch. Those homographies describes the mapping of Eireten
any two planes, and have eight degrees of freedom.

When a pinhole camera model is used, the perspective mapping of a plane is
however limited to six degrees of freedom. In applications where the poae of
three-dimensional plane is tracked, the two additional degrees of freedito-
mography trackers can turn out to be an actual disadvantage. The adbdie
grees of freedom in homographies make it possible for the tracked pato@ to
distorted in ways which makes it more difficult to determine the pose of the plane.

Some effort was made to find a simple optical flow tracker, which directly
would track the pose of the plane. When no result was achieved thataway,
mography tracker was modified to attain two wanted properties: restricting the
freedom of the homography, such that the patch is consistent with a picdnolera
model; and enable the tracker to be queried about the pose directly. @adying
mathematics relies on equation (4.1), from which the homography can be tolate

reprojected 3D-coordinates into image coordinates

19

4. Plane Tracking in Three Dimensions

as:

I
H=K |1 719 t
o

Considering the change of the pose as estimated by the tracker to corsshafl
change of rotation and an entirely new translation part:

. 1

’ / —a3 a2 | ’ ’/
H=K|7 7 t |=K ag 1 - T T t
o —az ar 1 . |

The value of those equations would become clear as it can be seen thainthe tr
lational part of the pose is given directly, while the incremental changetition
can be determined by solving an over determined equation system:

i

0 r31 —To1 T — 711
!

—r31 0 r11 rop — To1
(05} 7

ror —rT11 0O Tgy — T31
(65) 7

0 r32 —T22 as T19 — 712
!

—r32 0 12 Tg — T22
!

L 22 —ri2 0 | 730 — 732 |

The restriction of freedom for the homography tracker was conducteiétermin-

ing the initial pose of the plane before tracking began, and then determanges

of the pose by looking at the incremental change of the homography. eBkréck

tion of the homography into a valid pinhole camera transformation is then carried

out by recomputing the homography using the pose of the tracked plane.
Unfortunately, the current implementation of this alternative tracker pedor

much worse then plane trackers using homographies. If more work wadatpu

this tracker, | believe that that might change.

20

Chapter 5

Tracking of a 3D-box

This chapter of the thesis is devoted to tracking of three dimensional boraask-
ing was conducted by keeping separate plane trackers for each ok thidess of

a box. Only one tracker at a time would be used for tracking, and a mode&of
box would then be used to determine the pasfaall other sides as well as the pose
of the box. The calculated pose would then be used to select the mospagao
side to track in the next tracking iteration.

5.1 Box Model

The box is simply modelled as depicted in figure 5.1. The model has six sides,
each associated with a separate tracker. The physical dimension ofrackd
patch is given by the dimensions of that side, but the number of pixels ysthe b
tracker is currently not determined before the tracker is created. Hsemnebehind

that was to create a tracker with as little interpolation as possible from the camera
image used for initialising it.

DN §

Figure 5.1: Box model. The origo for the box model is in the centre of the box

1To know the pose would mean that both position and orientation is known in e dimen-
sional space.

21

5. Tracking of a 3D-box

One important role of the model is to enable transformation of the pose of one
of the sides of the box into the pose of the box. It is equally important to be@ble
retrieve the pose of an arbitrary side of the box from the pose of the\ithout
those transformations, it would not be possible to change the trackedfside o
box.

The model of the box could beside the measurements of the box also contain
the textures for the sides of the box, but knowledge of the texture is naisgs.

The currently implemented box tracker is initialised with the dimensions of the box
and the four corner points of the front surface, and it then gathetsrésxfor the
other sides of the box as the box is rotated. It would be much easier to rdliatky

the box if the textures of its sides would be known in advance. Without alpy he
from the textures, and without any help from structure-from-motion algmsth
deviations from the box can be seen when the box tracker switches tootfaek
sides than the first side.

5.2 Individual Trackers

All six individual trackers would use optical flow tracking capable of kiag per-
spective distortions. Each tracker delivers a homography relating ttietigpatch
in image coordinates and real world coordinates. That homography isifeshto
estimate the pose of the tracked planar patch (see chapter 4).

One problem for the trackers was changing illumination, as the tracked side
of the box might have to be tracked during a 90 degree rotation. The diusiter-
measure was to compensate for uniform changes in illumination (see sectidn 2.4
This proved to be insufficient during some circumstances, especiallyettifhs
occurred on the tracked side.

A successful ad hoc solution was to add background subtractionitiipaio
the plane trackers. Normally, background subtraction would involve contisly
updating the background image. When a plane is tracked, that would Bowev
become completely unnecessary since the supposed intensity values trthe p
ideally would be known and constant at all times.

In the beginning of any tracking iteration, the intensity discrepancy astseen
the tracker would be due to deviations between the new state of the tracker an
the last known state of the tracker. The threshold for a pixel could thesebe
to the absolute value of the gradient magnitude, as that corresponds togibst lar
expected intensity change for any single pixel displacement. To allow gistre
cies larger then one pixel, that threshold was basically multiplied by some small
factor. Another small factor was additionally added to allow for other tyfeés-o
tensity variations. There was nhot much experimenting to find the best strategy
thresholding, as the first tries went way better then anticipated.

5.3 Tracker Handover

The side of the box, which is facing the camera the most, is currently useeé as th
tracked side. If a tracker handover should occur, it would happeheakast step

22

5. Tracking of a 3D-box

in a tracking iteration. That means that the previously tracked side justbesare
tracked, and the image used for tracking is used for constructing a neketrir

the next side (if that tracker was not previously initialised). When trackand
over to each other, the most important part is that they use the model of ttie box
correctly determine the corner positions of the new tracker.

Previously, the side with the largest area as seen from the camera wiabuise
that suffered a few shortcomings in real life. The most evident drakbtasing
the area to decide when to shift the tracked face occurred for boxesngttual
sides. The area of the smaller side would not become larger then the afea of
tracked side before excessive perspective distortions made traakialkgile.

5.4 Discussion

There are possibly some additional improvements that could be added to xhis bo
tracker. First of all, thresholding with the purpose of removing reflectiand
reduce the impact of severe illumination changes did work beautifully. Tleslthr
olded image might be improved by erosiérand dilutions designed to remove
isolated thresholded points, and removing isolated holes in regions thadtl ¢feou
thresholded.

Another feature that would be useful in most practical situations wouldéde th
ability to initialise the trackers for all sides of the box in advance. Currently on
the first face of the box is initialised, and the other sides are captured iéiatisad
as the box rotates. The drawback of using the current tracker andnbdel to
initialise new trackers is error propagation. It is currently not possibleotate
the box 270 degrees without loosing track, but that might possibly be partially
remedied by choosing a better box with a higher contrast pattern.

2Erosion is an operation on binary images removing edge pixels and themehking all areas.
3Dilution is an operation on binary images adding edge pixels and therehgiewjall areas.

23

Chapter 6

Implementation

This chapter briefly describes some of the most useful C++ classelopesaur-
ing this work. The source code is heavily documented such that dokygem
generate useful documentation.

6.1 Image and Video

Classes developed for image and video manipulation are described in tihdm sec
They include the classes Text and Line that store texts and lines, andahey c
be used for drawing their content into images. The class SImage storessimage
and contain many image manipulation functions. The header file for that class
also contain several template functions for manipulating images whose pigels ar
stored sequentially in ordinary arrays of arbitrary types. The classkeo8ink and
VideoSource are used for writing and reading video sequences to@ndifes on

hard drives. The last two classes in this section, GrabberThread gSdhdduler,

are both useful when developing applications where image acquisitiorfismped

by a separate thread.

6.1.1 Text

The Text class is used for writing strings into images. It contains a forhéofirst
128 characters (i.e. some Swedish/German characters are missing)jsostilit
very useful. Typical usage involves writing names or numbers of traaiketop of
displayed images.

Exanmpl e Text usage

int w=320; int h=200;
unsi gned char* i mage = new unsi gned char[wh];

Text t("This should get drawn with val ue 255");
t.dram(w 10, h/2, inmage, w, h, 255);

!Doxygen is a widely used documentation generator, similar to javadoculppiogting much
more languages.

24

6. Implementation

6.1.2 Line

The Line class represents line segments by their two endpoints. The maaafsag
the class is to draw lines (both solid and dotted). This class performs clipping o
lines outside the destination image before drawing, and is hence safe tathse w
unreliable input. This class additionally contains a limited set of geometric meth-
ods. Those methods can determine geometric length, normalized direction vecto
angle of line, and distance to the line (when both endpoints extended infinitely)

6.1.3 Simage

SIimage is a basic greyscale image class, with the capability of referencidlg sma
windows of other images without copying any data. The same header file also
contains many useful image manipulation functions which operate on ordinary
unsi gned char * images, as well as some template functions which can op-

erate on two-dimensional arrays of arbitrary types.

6.1.4 VideoSource

The VideoSource class is a wrapper interface, which provides a simpleofva
using the frame grabber, files, fifos, and other video sources.

The constructoVi deoSour ce(string pat hname, int* w, intx*

h, int framerate) canbe used to choose input from the grabber card if the
pathname is an empty string. If the pathname is a directory, all files in that diyecto
are read as pgme-files in alphabetical order. If pathname specifies a méltipie-
pgm-file, that file would get used as the video source. The YUV4MPE@Gadbis
also detected and can be used. There is also support for readingohatadth fifos

as well as files, for instance to pipe images from mplayeto some application
using VideoSource.

The width and height parameters are passed to the grabber card totkelect
capture resolution. If the video is read from file(s), the width and heigbsed
to the constructor gets overwritten with the values from the file used for téie fir
frame.

The framerate parameter is used to select framerate for other sourogh¢he
grabber card. The implementation of framerates relies on usage of the RTC o
the computer, and it must be configured to allow use of higher user intdraip
guencies, for instance by appendirec’ho 1024 > / proc/sys/ dev/rtc/
max- user - f r eq” to the start up scriptc. sysi nit.

Exanpl e Vi deoSour ce usage
/+*+ Programthat joins all files found in a directory to a
* single multi-frame pgm
* @ut hor Sinon Custafsson */

#i ncl ude <i ostreane
#i ncl ude "Vi deoSour ce. hh"
#i ncl ude "Vi deoSi nk. hh"

usi ng namespace std;

2MPlayer is an open source media player.

25

6. Implementation

int main(int argc, char* argv[]){

if(argc!=3){
cout << "Usage: "<< argv[O]
<< " input_directory_or_file output_file.pgnt << endl;
return 1;
}
int w=640;
int h=480;

string destpath = argv[2];

Vi deoSour ce* s =new Vi deoSource(argv[1], &, &h);
unsi gned char* data = new unsi gned char[wh];
Vi deoSi nk* si nk=new Vi deoSi nk(dest path, w, h);

if(!sink->0K()){ return 1; }

whi | e((sink->0K()) && (!s->isLast())){
s- >get Gr eyl nage(dat a) ;

si nk- >add(dat a, w, h);

s

if(!sink->0K()){ return 2; }
del et e sink;

del ete[] data;
return O;

Besides using image sequences captured with the grabber card, it is poss
ble to convert movies into the appropriate pgm-format or YUV4AMPEG?2 foiifnat
mplayer is installed on the system. To extract all frames from an arbitrary ragvie
pgm-images, go into the destination directory, and runpl‘ayer
[path/filename. avi -nosound -vo pnm pgni in the directory you
would like to save all frames in. To convert all those images into a single multiple-
frame pgm-file, use the example application above.

6.1.5 VideoSink

The VideoSink class stores a sequence of images as a multiple frame pgneffile. F
a usage example, see the example code in section 6.1.4.

6.1.6 GrabberThread

The GrabberThread class is a thread class, which can run conityneth the
main application. Its sole purpose is to grab frames from files or video device
All grabbed frames are stored in a circular buffer to allow the main threadgto la
behind for short periods of intense processor usage.

Exanpl e G- abber Thread usage

int w=320; int h=240;
G abber Thread gt (w, h, "vi deo_source_file. pgnt, 25);

unsi gned charx* buff; /1 Shoul d not be allocated separately
gt.start();
while(!gt.isLast()){

i f(gt.hasFranes()){ // Do we have a new frame to process

buf f =gt . get Next Buf fer(); //Get buffer of new frame

/I maybe do sone preprocessing of buffer

26

6. Implementation

}

//do part of what we want to do with buffer

/* reschedule (we don’t want to use the entire timeslice, since it is =
* too long). Not rescheduling mght also prevent G abberThread from =*
* being picked to buffer franes, which could |ead to dropped franes. =/
sched_yi el d();
}
gt.join();

6.1.7 MyScheduler

MyScheduler is a class used for cooperative multitasking. An applicatiog us
it can be found in section 7.2.2. This class contains round robin queuai$ of
callbacks that should be scheduled, and the main loop of applications steduld
this class repeatedly to run the next item in the queue. It contains one fpreue
items that should be executed only once for each new frame, and ateepaeae
for items which can run repeatedly.

6.2 Feature Detectors

6.2.1 HoughTransform

The HoughTransform class performs Hough transforms to detect limeegdg. If
line segments are repeatedly computed in a window of known size, seatuaby
are precomputed to speed up the line detection process. More informatiah ab
the Hough transform can be found in appendix E.2.

6.3 Tracking and Clustering

Classes developed for tracking and clustering are described in thisrsedtie

class LineTracker is a tracker for tracking line segments in images. It isxfieto
by two classes, which use SSD tracking, namely SSDSlowTracker an8I880
CircuitTracker. Those classes are followed by classes for optical tilagking.

FlowTrackerCore is useful for developing entirely new optical flow keas, and
the FlowTracker class contain abilities for tracking patches with severfakrelift

motion models. The last class in this section is the PerspectiveTrackerelasls,
uses a cluster of several affine trackers to track perspective distortio

6.3.1 LineTracker

The LineTracker class is used for basic line tracking, and can trackhigihcon-
trast lines as well as keep track of their extension. Appendix E.1 desdribe it
works in more detail.

27

6. Implementation

6.3.2 SSDSlowTracker

The SSDSlowTracker class implements a basic $8&cker. This tracker also
happens to be the computationally most expensive of the trackers implemented,
hence the name SSowrracker. Its use should be limited to comparison against
other trackers. The tracker can only track translations of the trackieth,pand is
designed to track square patches of gi#e+ 1, whereR can be seen as the radius

of the patch. The principle behind it is described in section 2.1.

Exanpl e SSDS| owTr acker usage

int wh; int radius=20;
Vi deoSour ce g("video.pgnt', &w, &h);

/+ Allocate buffer _AFTER_construction of VideoSource, since *
* width and height altered to match values in the file "video.pgnt. =/
unsi gned char* i mage = new unsi gned char[wh];

g.getGeylnage(image); //get first frame

/+ Create square tracker with centre at (W2, h/2), =*

* and sides of |length 2*radi us+1 * [

SSDS| owTr acker ssd(inmage, w, h, w2, h/2, radius);

ssd. set MaxSear chDev(5); //Setting max searching distance to 5 pixels

while(!g.isLast()){ /Il repeat until last frame
g.getGreylmage(image); // Get next franme
ssd.track(image,w, h); // use SSDS|I owTracker to track patch

}

6.3.3 SSDShortCircuitTracker

The SSDShortCircuitTracker class is also an implementation of a basi¢ SSD
tracker. Contrary to the SSDSlowTracker, this tracker uses loop sivottiting
(described in section 2.2) to reduce the computational load while trackingjc Ba
usage of this class is identical to basic usage of the SSDSlowTracker Thasex-
ample code for SSDSlowTracker (section 6.3.2) applies for this class|haftee
changing the tracker class.

6.3.4 FlowTrackerCore

The FlowTrackerCore class contains the most important data structutesgot
rithms needed to perform optical flow tracking. It is purposely designeldeto
“universal” such that as many different optical flow trackers asiptsssould use
this for their tracking.

It can handle weighting, and evaluation of parameters in either a singleostep,
in two steps. It can also perform basic thresholding to handle occlusiaefiec-
tions better if thresholds are provided. It simply evaluates optical flownpeters
by using motion templates passed to this class. Keeping track of the curtent sta
of a tracker or higher level functions are not performed by this classsaould be
handled by the classes which are using this class.

3Sum of Squared Differences
4Sum of Squared Differences

28

6. Implementation

Two feature of this class makes it special: it can be switched between sev-
eral types of tracking by the user, and its storage type is specified as &atemp
parameter.

Interestingly, more motion templates can be added after initialisation, resulting
in a possibility to enhance tracking capabilities as time goes by. The idea was to
make it possible to have a separate thread that first sets up a translatien, teacl
then adds the ability to handle scaling, rotation, up to perspective trangfonsa
when the CPU is idle. That additional thread was however not implemented.

6.3.5 FlowTracker

The FlowTracker class was implemented to simplify everyday use of the Flow-
TrackerCore class. It presents a simple interface, common to all ar&asade-
veloped here. It can very simply be configured to track anything fromstegions

up to perspective distortions. Currently this class performs one trackirgjide

by beginning to track at the coarsest level, and going through all scalesand
including the finest before returning (when -1 supplied to the track@tfan).

6.3.6 PerspectiveTracker

The PerspectiveTracker class demonstrates clustering of sevetkdsaand al-
lows tracking of perspective transformations. The individual trackeyald not
have been able to do that without treating them as a cluster. See sectiono8.2.4 f
more information.

6.4 Timing

This section describes classes related to timing. The first class des¢hbdril C
class, is designed for generating periodic interrupts faster then thersgkiek, to
allow more precise control over when functions are brought back &i@@p. The
other two classes described here, Stopwatch and MeasureCycldesayred for
measuring time with very high precision.

6.41 RTC

The RTC class waits for periodic interrupts from the Real Time Clock (RTG#&.
RTC class is used by the GrabberThread class (see section 6.1.6),isvtespon-
sible for serving frames as similar as possible to a live system when stotad da
is used instead of live input. That required that a thread could be wgkéroom
sleep at regular intervals, at least up to 30 times per second. KernejsaubOHz
software clock (default for 2.4.x kernels) would be unable to wake uppshg
processes with a resolution better then 10 ms, which would mean that the bvailab
processing time for each frame would fluctuate by as muci 88%. The RTC
class makes it possible to circumvent that problem, and makes it possibleo slee
for shorter periods of time even if the kernel is unable to do that.

Different kernels use different default system clocks, and the situ&iox86
based kernels follows: the default for 2.4.x was 100Hz; the defautirggarom

29

6. Implementation

2.6.0 was 1000Hz; from 2.6.13, the software clock is a kernel configarpa-
rameter which could be 100, 250 (the default) or 1000. Additionally, some ve
dors have adjusted the system clock to other values as well. For kernelfastith
system clocks, nanosleep would be suited for sleeping with a high agépbart
other kernels requires other means such as using the RTC to be able taileep
a high resolution.

A few details have to be explained. To begin with, the class Udes/rt c
to be able to receive periodic interrupts, and that required thabc/ sys/ dev/
rtc/ max-user-freq is set to a high enough value. That can be achieved
by putting echo 1024 > /proc/sys/dev/rtc/ max-user-freq into
/etc/rc.local orany similar startup script. Thenax- user-freq” set
previously determines the highest frequency of periodic interrupts thappglica-
tion running in user space can request. The RTC class has been verfiiedtion
correctly with periodic interrupts up to 8192Hz, but for normal video pssing,
values of 256Hz or 512Hz would be more suitable. As a side note, the elass r
sorts to using nanosleep whedev/ r t ¢ is unavailable, or the requested interrupt
frequency was higher tharax- user - f r eq.

6.4.2 Stopwatch

The Stopwatch class simplifies measuring of execution time for selected pfeces o
code. It is designed to be used for code called repeatedly. Code caliedrxe
should preferably be measured by using the MeasureCycles classlirestdhere

is no need to gather statistics for non-repetitive functions.

The Stopwatch class returns four different parameters for each atopwits
name, and its minimum, mean, median and maximum execution time in either
clock cycles or milliseconds. Three properties of this class should berkefind
when using it:

Firstly, since the class provides statistics for median execution times, it has
to store all individual timings. That would require allocation of more and more
memory whenever the last allocated buffer gets filled. So Stopwatch shotite:n
used in code designed to run indefinitely.

Secondly, timing should not be nested, in the sense that one timer measures
execution of some block of code containing another timer. If that would be,do
reallocation of the array containing all timings would now and then add irrateva
clock cycles to the code executed and measured.

Thirdly, to make the measurements as easy as possible to add to existing code,
a decentralized way to identify and keep track of all timings was employed gStrin
passed to their constructors identify the stopwatches, and that identitytievep
when a stopwatch is destroyed and created several times. Measureetaresrp
the start of and the stop of a stopwatch can be printed either as the nunaberiof
cycles spent in execution, or as the number of used milliseconds.

Exanpl e Stopwat ch usage
Stopwatch t1("int=int*int");
St opwat ch t2("fl oat=float*float");

Sman nanosleep currently incorrectly states a 10 ms resolution, it reallyssfi/are clock”

30

6. Implementation

int int1=5; int int2=6; int int3=7;
float float1=5.01; float float2=5.02; float float3=5.07;

for(int i=0; i<50; i++){
tl.start();
for(int j=0; j<100; j++){ intl=int2*int3; }
tl.stop();
t2.start();
for(int j=0; j<100; j++){ floatl=float2«float3; }
t2.stop();

St opwat ch t3("Overhead"); // Wirks, even though created and destroyed
t3.start(); /1 50 tines before the results are printed.
t3.stop();

}

cout << Stopwatch::getStat() << "\n" << tl.getStat_as_ms() << "\n";

6.4.3 MeasureCycles

The MeasureCycles class measures CPU clock cycles using dtiest” instruc-
tion available in protected mode for Pentium Pro and later and in all newer AMD
processors.

Since this instruction executes in parallel with other instructions, some other
people prefer to execute @pui d instruction before and after executing each
r dt sc instruction, to wait for the processor to completely finish all current instruc
tions in the pipelines before issuing thdt sc instruction. That adds a significant
overhead, and it was decided that it would be better to repeat the meesise
then to add an overhead of several hundred clock cycles.

Exanpl e MeasureCycl es usage
/+* To measure cycles during 1 second, to be able to calculate timng

* in mlliseconds (only done for first instantiation of the class). =/
Measur eCycl es c;

/+ Alternative initialisation to specified core frequency w t hout
* measuring, avoiding the 1-second del ay otherw se inposed. =*/
/1 MeasureCycl es ¢(2000000000);

t ypedef MeasureCycles::ull ull;

ull start, stop;

start = c; //equivalent to c.getCycles();
call _to_function_to_neasure();

stop = c;

cout << "Cd ocks used: " << start-stop
<< " approximate tinme: " << c.as_ns(start-stop) << "ms\n";

The added overhead of measurement on my compiled vérsiasinever lower
then 28 cycles, but would occasionally get as high as 255 cycles. Thotea-
tions are mostly related to caching, pipelining, branch prediction, out-adrarx-
ecution, and other features of the CPU. For very long measuremenégjicty
and interrupts are going to be a problem, making it difficult to measure anything
else then the total time of execution. In those occasions, measurements of max,

6Amd 64 3000+ socket 754, gcc version 3.3.2 20031022, profilingnabled

31

6. Implementation

min, median and average time makes more sense, and the Stopwatch class could
be used for that.

For my CPU, the overhead equates to measurement errors normally close to
14 ns, occasionally as high as 128 ns. As a comparison, gprof whidt beu
used to measure execution time of functions, uses a sampling period of 10 ms,
resulting in errors up to 10 ms or 20 000 000 cycles for one-shot meaasuts on
the same CPU. In addition to that, the overhead from enabling profiling fgr ve
short functions is sometimes even larger then the execution time of the functions
themselves.

6.5 NCurses

It was discovered that one large bottleneck of many tracking implementatiass w
their slow output of status information to the terminal. One promising solution
would be to use ncurses to output that information to the terminal, insteadiabhav
output written to the scrolling terminal handled by the X server. After somibas
ncurses functionality was implemented, it was however discovered thajeapart

of the issue was caused by excessive useofit << ... << endl;". The
endl was not only causing a new line to be written, but also flushed all buffered
data to the screen, instead of handling writes to the screen at more dpfeau-
casions. The simplest way around it would be to always ggait << ... <<

"\ n"; "instead.

By the time of that discovery, a working quite transparent wrapper fer us
of ncurses had been implemented. The remaining increase of perforrf@nce
applications using this output method caused ncurses support to stay nojie.p

The class OutputWrapper is the central class for a programmer addinggsscu
support. It can be used to redirect cout and cerr to an ncursesyispid if the
output from the program already is displayed as a few lines with repetitfee-in
mation, only a command to flush output to the screen has to be issued each time
the virtual page should get written to the physical screen. See sectiorfd@.zi
example.

6.5.1 OutputWrapper

OutputWrapper is a class that simplifies writing to the terminal without
scrolling, with simple switching between normal output to stdout and output
to an ncurses terminal. The most practical aspect is the ability to steal cout
and cerr, redirecting their output to the ncurses screen without haviogréofor
anything else. The only thing to remember is to replace.” << endl " with

... << "\n"" in all outputs, or calling {(QutputStreanbufx)

r dbuf ()) - >di sabl eSync() " for the OutputWrapper class, to avoid updat-
ing the screen when not wanted.

Exanpl e Qut put W apper usage
#i ncl ude "Qut put W apper. hh"
#i ncl ude <i ostreanr

usi ng nanmespace std;

32

6. Implementation

int main(){
Qut put W apper out;

/lredirect cout and cerr to CQutputWapper
out . set Mode(Qut put W apper: : NCURSES | Qut put W apper: : STEAL_BOTH) ;

|/ process data, use paged out put
static int max_bottl es=100; //=I NT_MAX;

for(int i=max_bottles; i>0;i--){

cout << i

<< " bottles of beer on the wall " << "\n"; //redirected above
cerr << i << " bottles of beer. "; /lalso redirected
out << "Take "; /'l al ways avail abl e
if(i==1) cout << "it"; else cout << "one";
cout << " down and pass it around - " << "\n";
if(i==1) {cerr << "NO MORE bottles of beer on the wall!!"; }
else { cout << i-1 << " bottles of beer on the wall. "; }
out.newPage(); //flush page to screen and clear tenporary page
sl eep(1);

6.5.2 OutputStreambuf

OutputStreambuf is an implementation of a Streambuf class, which is used to out-
put data to ncurses windows. Direct use of this Streambuf is discoyragete
OutputWrapper allows easier interfacing, as well as the ability to directly use io
manipulators when outputting data through that class.

The OutputStreambuf can however be initialised to output data only to a spe-
cific rectangular area of the screen, but even then it should préfdvalwrapped
by using the Streambuf as an argument to the constructor of an Output&rapp
Note that each window has to be flushed to the screen separately. Alsthabte
ncurses behaviour is unspecified when overlapping areas aresssederlapping
between different windows should never be forced by a user.

6.5.3 NCursesUser

NCursesUser is a helper class that should be inherited by classes asisgs) to
provide a callback which is called when ncurses is enabled or disabledllgiob
and optionally to provide a callback for terminal resize events

Make sure that the callback functions is not using NCursesClass in suai a
that infinite loops could occur, at least by not letting the NCURSES_OFRi) a
NCURSES_ON() call NCursesClass::forceMode().

Exanpl e derivation from NCursesUser
#i ncl ude "Qut put W apper. hh"

cl ass OneNCursesUser : private NCursesUser{
public:

OneNCur sesd ass() {
//the call back functions are registered automatically just
/I before the body of the constructor begins to execute.

i f(NCursesd ass: :isActive(){
//do something special if ncurses active
}el sef
//avoid doing bad things if ncurses not activated yet.

33

6. Implementation

}
}

private:
/] Cal | back functions
voi d NCURSES_OFF() {
//put the class into sone state avoiding use of ncurses functions

}
voi d NCURSES_ON() {
//put the class into sone state allow ng use of ncurses functions

}

voi d NCURSES_RESI ZE() {
//when this is called, the terminal has been resized
int newx = NCursesd ass::getWdth();
int new = NCursesd ass: : get Hei ght ()

}

b

6.5.4 NCursesClass

NCursesClass is a helper class for coordination between NCURSESutOutp
Streambuf and OutputWrapper. It should normally not be used by applicatio
programmers directly.

6.6 Additional Supporting Classes

This section described some useful support classes developed thisngork.
They contain a very simple command line argument parser named ArgumeariPars
classes for reading and writing data to m-files (for use by Octave or Matald)a
class that simplifies testing for Ctrl-C key presses.

6.6.1 ArgumentParser

The ArgumentParser is a basic class, which facilitates parsing of command line
arguments. It provides parsing of integers, floating point numbers, lssgtand
string arguments. Switches can be either 0 or 1, depending on their absenc
presence at the command line. All other variables keep their values whearthe
absent on the command line, providing an easy implementation of default values
The class automatically documents all possible command line arguments and their
default values. Additional documenting strings can be inserted to furtsarite

the use of command line arguments.

Exanpl e Argunent Parser usage
#i ncl ude " Argunent Par ser. hh"
#i ncl ude <i ostream h>

usi ng nanmespace std

int main(int argc, charx argv[]){

int on; /lbinary sw tches can not have default val ues
int off;
int one_int = 2; //default val ue

doubl e one_doubl e
string one_string
string unparsed_1

3.2; /Il default val ue
" //default val ue
// default val ue

34

6. Implementation

string unparsed_2 = "sone default string"; //default val ue

Ar gunent Par ser p;

p. addHel p("This is sone test program for argument parsing\n");
p. addHel p("Try it with some of these binary switches:");
p. addSwi tch("-on", &n, "To turn sonething on...");
p. addSwi tch("-of f", &ff,"To turn sonething off...");
p. addHel p("\nTry sonme other sw tches, expecting nunbers and strings:");
p.addInt("-one_int", &one_i nt,"Stored into local variable one_int");
p. addDoubl e("-one_doubl e", &one_doubl e, "This is sone nunber");
p.addString("-one_string", &one_string,"coment...");
p. addHel p("\nlt can catch argunents not preceded by tokens:");
p. addUnpar sed(&nparsed_1, "only this has coment, not the other");
p. addUnpar sed(&unpar sed_2) ;
if(argc==1){

cout << p.getHelp() << endl;

exit(0);

p. parse(argc, argv);

cout << "on=" << on
<< "\noff=" << off
<< "\ none_int=" << one_int
<< "\ none_doubl e=" << one_doubl e
<< "\none_string=" << one_string
<< "\ nunparsed_1=" << unparsed_1
<< "\ nunparsed_2=" << unparsed_2
<< endl
e TP "
<< endl
<< "parse errors: \n"
<< p.getErrors()
<< endl ;

6.6.2 MFileReader

The MFileReader class is used for reading numbers stored as vector§legsm-
It has no knowledge of any other aspect of Octave then vectors, dindotvbe
able to process files containing commands, or any other type of matricesrtben o
dimensional vectors.

The class is designed to completely ignore everything after the line

%===[end of data (M-l eReader won't read past this line)]====

which automatically got added by MFileWriter. Below that line, any kind of com-

mands or even garbage can be inserted without interfering with MFileReade
Exanpl e MFi | eReader usage
MFi | eReader m("results.nl);

for(int i=0; i<n{"x"].size(); i++){
cout << "x[" << i << "]=" << n{"x "][|] << ",
<< X[<< i << "]=" << ["xx"][i] << endl;
}
vector<double> x = n["x"]; //to inprove performance, get access
//to the vector directly, instead of
//having to | ook up the vector
/1through ni"x"] during each access.

"m-files are files containing Matlab (or Octave) data and commands.

35

6. Implementation

6.6.3 MFileWriter

The MFileWriter class provides a way of writing vectors to an m-file. The write
to the specified file is postponed until the destruction of the class, and umtil the
all added vectors are stored in memory. The vectors to be written are sioead
number at a time as can be seen in the example code below.

It is also possible to add any number of arbitrary strings, which will get ap-
pended to the end of the m-file. That facilitates writing applications, which in ad-
dition to storing valuable data, also could append all commands needed &sproc
and evaluate that data in either Matlab or Octave.

Exanmpl e MFil eWiter usage
MFileWiter m("results.nf,
"% exanpl e of squaring a nunber, where xx(i)=x(i)*x(i)");
for(int i=1;, i<4; i++){
m addToVector ("x",i);
m addToVect or (" xx",i*i);

}
m appendStri ng("devi ati ons=xx-x. *x;");

m appendSt ri ng(" max_abs_devi at i ons=nmax(abs(devi ations))");

m appendString("plot(x, xx, \";conmputer;\",x, x.*x, \";octave;\")");

The code above would create this m-file:
results. m
%Exanpl e of squaring a nunber, where xx(i)=x(i)*x(i)

% [start of data]

xx = [1;
4,
9;

%===[end of data (M-ileReader won't read past this line)]====

% [Appended commands]

devi ati ons=xx- X. *X;
max_abs_devi ati ons=nax(abs(devi ati ons))
plot(x, xx, ";fromconputer;", X, x.*x, ";according to octave;")

% [end of appended commands]

Running the m-file in Octave would produce the expected plot, as well as print-
ing the linemax_abs_devi ati ons = 0, indicating that the algorithm in oc-
tave gave the same answer as the algorithm of the C program. This example might
seem trivial, but the principle is very useful for checking implementatiorss fir
written in Octave (or Matlab) against their reimplementations in C.

As a side note: For those using Octave, the installation of octave-forge-is re
ommended, as this adds many additional commands. This class does nat depen
of the presence of any commands at all, but users of this class might wase to u
functions not yet included in the standard Octave distribution.

36

6. Implementation

6.6.4 MY_CTRLC_TRAPPER

MY_CTRLC_TRAPPER is a class that intercepts the SIGINT signal (CtraGJl
makes testing for it quite easy. If desired, it can be initialised to call the prsvio

SIGINT handler after a specified number of SIGINT signals.
Exanpl e MY_CTRLC_TRAPPER usage
MY_CTRLC TRAPPER ctrlc(3); //intercept Ctrl-C 3 times before calling
/'l previous SI A NT handl er.
//Use 0 to never call previous SIG NT handl er.
for(int i=0; i<INT_MAX; i++){
sl eep(1);
if(ctrlc.pressed()){ break; }

}

6.7 Deprecated Classes

This section describes some of the classes, which for various reasomaot com-
pletely finished or got replaced by other classes but still deserve &@bpemtion
in the report.

6.7.1 SMatrix

This class is deprecated — use arrays or CASMatrix instead.

There was a number of reasons why something else then CASRlatas
wanted for matrix calculations. The first reason for developing SMatrix that
CASMatrix lacked the ability to define the storage type of its elements. Other rea-
sons included the inefficiencies in the multiplication routine in CASMatrix
(see section D.2.1), the poor performance when handling small objeetsése
tion D.2.2), the fact that CASMatrix by default always is compiled with optimisa-
tions disabled, and that licensing restrictidpsohibits distribution of CASMatrix
in source format.

The most valuable insight from the development of this class might be the op-
timised multiplication routine. Some comparative measurer@etn be found
in tables 6.1 and 6.2. Note that the performance increase of @&ibgri x: :
mul _and_assi gn with optimisations over usinGASMat ri x: : oper at or *
without optimisations is 9.5 times faster execution when multiplying 10x10 ma-
trices, and that the difference grows slightly for larger matrices. Hadlyefe
lessons learned could be integrated into CASMatrix, as suggested in d8cion

The reasons for deprecating this class in this project was that matrix évers
and singular value decomposition never got implemented, resulting in the fieed o
going through CASMatrix for that functionality. Another reason was thatdata
was stored according to the less normal FORTRAN convention. The chbice
the less popular FORTRAN ordering made the class more efficient in this-partic
ular project, where more matrices with many rows was used then matrices with

8the already developed candidate in NOMAN, which is a local source @miEsitory.

SCASMatrix uses some code from “Numerical recipes”, which caneatedistributed freely in
source format.

19All Measurements in core cpu cycles on an Athlon 64 3000+ with 512 KBache.

37

6. Implementation

Table 6.1: Comparison of multiplication when using SMatrix or CASMatrix,ywhe

both compiled with optimisations enabledd® - DNDEBUG). Values in parenthe-

sis compare speed with that of CASMatrix, and the other value is the neglasur

median number of clock cycles for the multiplication.
Compiled with optimisations enabled

matrix CASMat ri x: : SMatri x:: SMatri x: :
dimension oper at or * oper at or * mul _and_assi gn
3x3 1346 (100%) 1292 (104%) 378 (356%)
5x5 3269 (100%) 1697 (193%) 822 (398%)

10x10| 17849 (100%)| 7907 (226%)| 5938 (301%)
100x100| 13244775 (100%) | 3490105 (380%) | 3414891 (388%)
1000x1000 (100%) (479%) (480%)
3333x3333 (100%) (612%) (614%)

Table 6.2: Comparison of multiplication when using SMatrix or CASMatrix,nwhe
both compiled without optimisations enabled. Values in parenthesis cospese
with that of CASMatrix, and the other value is the measured median nunfber o
clock cycles for the multiplication.
Compiled with optimisations disabled
matrix CASMatri x: : SMatri x: : SMatri x: :
dimension oper at or * oper at or * mul _and_assi gn
10x10 56425 (100%) 23657 (239%) 21323 (265%)
100x100| 50330099 (100%) | 16990850 (296%) | 16810706 (299%)
1000x1000 (100%) (430%) (453%)
3333x3333 (100%) (496%) (492%)

many columns. Yet another reason for not using this class was that lakyaev
tion to remove unnecessary use of temporary objects (see section D.2.2ptva
implemented. Without lazy evaluation, users of this class would have to call many
different specialized functions of the class to get even more additiorfakpence
increases, instead of being able to write arithmetic matrix expressions ds usua

6.7.2 SSDFlowTracker

This class is deprecated — use FlowTracker instead.
The SSDFlowTracker class is an optical flow tracker. The class cak tinac
dimensional translations, translations combined with rotation, or full affine motio

6.7.3 SSDFlowTrackerRect

This class is deprecated — use FlowTracker instead (unless the dynaleiticn
of proper pyramid levels is very important).

The SSDFlowTrackerRect class can track two dimensional translatiors-tra
lations combined with rotation, or even full affine motion. This class dynamically
selects a proper pyramid level based on how large the deviation of thestrisck

38

6. Implementation

between each new frame. Additionally, it treats iterated tracking of the samefr
specially: it can track at finer pyramid levels while iterating, and switch bateo
coarser scale when a new frame is received.

6.7.4 ClusterPoints

This class do not provide a suitable API for use beyond experimentation.
ClusterPoints was a helper class used when testing clustering of points base

on equidistance in subsequent frames. The cotlegt C ust eri ng. cc could

be examined for usage hints and code from that file should preferabigrsferred

to the ClusterPoints class. Additionally, ClusterPoints currently only provigds

output of identified clusters, which is of little use beyond testing.

39

Chapter 7

Experimental Evaluation

These experiments were carried out on a computer with the following sgecific
tions:

Table 7.1: Specification of test system
CPU AMD Athlon™64 Processor 3000+ (2GHz core, 512 KB cache)
RAM 1024 MB PC3200
MBoard Abit NF8

When the code was compiled and linked with profiling information and analysed
with gprof, the resolution was not accurate enough. Therefore, all tinzsuane-
ments below were collected using thdt sc instruction and knowledge of the
core frequency. The Stopwatch class described in section 6.4.2 wsiswziad to
handle these time measurements.

7.1 Evaluation of Area Trackers

This section briefly describes the results of measurements performed waiile e
ating the area trackers.

7.1.1 Time Consumption

These measurements allow comparison of time consumption to be performed be-
tween some of the implemented trackers. It also shows the difference Ibetwee
interpolation types, as trackers using nearest neighbour (NN) int¢iqolaere
measured separately from those who use linearly interpolated value$tignea-
surements could also be used to determine the maximum number of simultaneous
trackers allowed.

Time measurements for any tracking iteration for the optical flow tracker Flow-
Tracker are located in table 7.2. Table 7.3 contains measurements for $&DSlo
Tracker, and table 7.4 have measurements for a short-circuited tracker.

These results could be summarised by stating that optical flow trackers by fa
outperform the other correlation based SSD trackers in term of compuahtdn
ficiency. It is also clear that the impact of interpolating pixel values instéad o

40

7. Experimental Evaluation

Table 7.2: Time for tracking measurements for a FlowTracker with dimension
81x81, using every fourth pixel only in each direction
Warp Optimised Not optimised

Tracker type type? (ms) (ms)
Translation NN 0.0502 0.1063
IP 0.0606 0.1183
. . N 0.0722 0.1347
Translation & rotation P 0.0816 0.1528
, NN 0.0857 0.1768
Affine (two step) 0.0956 0.1949
Perspective (one step) NN 0.0980 0.2273
P 0.1042 0.2382

#Median time for tracking if compiled with optimisations enabled “-02"
PMedian time for tracking if compiled without optimisations
°NN = Nearest Neighbour's value, IP = Interpolated pixel value

Table 7.3: Time for tracking measurements for an SSDSlowTracker witmsliome
81x81

Max search distance Optimised Not optimised

(pixels) (ms) (ms)
5 2.584 17.28
10 9.743 65.16

#Median time for tracking if compiled with optimisations enabled “-02”
PMedian time for tracking if compiled without optimisations

Table 7.4: Time for tracking measurements for an SSDShortCircuitTragklr
dimension 81x81

Max search distance o mintime averagetime maxtime
: Optimised
(pixels) (ms) (ms) (ms)
5 YES 0.472 2.655 5.38
NO 1.165 6.938 1551
10 YES 1.089 5.885 12.89
NO 2.634 15.22 31.89

#Whether class compiled with optimisations enabled “-O2”

using nearest neighbour interpolation is very small, so there is no resdnda
avoid using the better interpolation. The only real surprise was that shiotited
tracking in some circumstances performed worse than SSD tracking withorit s
circuiting, but only when both were compiled with optimisations enabled.

41

7. Experimental Evaluation

7.1.2 Deviation from Expected Position

Tests for measuring the deviation of trackers from their supposed pokdmheen
constructed. Those tests used an image displaced with known displaceamehts,
the positions of trackers following parts of the image were saved to be ggede
later. More about those experiments can be found in the later parts ofrs2atid.

7.1.3 Step Response

This section will demonstrate how a small perturbation is handled by the
tracker. It is a good “sanity-check” of trackers, and can find ersarch as in-
correct centre-points of trackers or other initialisation errors. By dgsigptical

flow trackers should respond very quickly to changes as long as theebare
small.

The optical flow tracker was repeatedly tracking an identical image. The
tracker was however displaced one pixel in x and y direction from its initial p
sition in the first iteration, so the results demonstrates how the tracker gasver
towards its initial position. Figure 7.1 shows a typical convergence backeto th
original position. For some patches, the tracker converges back to thé jaisia
tion. For some other patches, such as the one used in figure 7.1, the trest&ad
converges to a position very close to the original position. Note that theemack
image was downscaled, so the deviation as perceived by the tracker ix@d, p
not 0.2 pixels.

1.00 T T T T
0.75 E
5
% 050 F 1
K=
>
©
0.25 | k
0.00 [? 1 1 1 i
-0.25 0.00 0.25 0.50 0.75 1.00

dx (pixels)

Figure 7.1: Typical path of tracker converging back toward true posiéfiar large
displacement (affine tracker using linear interpolation in warp, dowtlisgel).

The distance from the initial position to the tracker’s current position is also
plotted in figure 7.2. That figure clearly shows the difference betweieig ngarest
neighbour interpolation and linear interpolation. Note that the tracked image wa
downscaled by the factor two, so the deviation as seen from the trackalf isfh
the values in those plots.

42

7. Experimental Evaluation

deviation (pixels)
deviation (pixels)

0 L 1 1 1 o r 1 1 1
0 5 10 15 20 0 5 10 15 20

iteration iteration

(a) Using linear interpolationinwarp (b) Using nearest neighbour interpolation in
warp

Figure 7.2: Deviation in pixels plotted against tracking iteration for tracker a0
position was forced off target. The two figures show the difference ddysdif-
ferent means of warping.

7.1.4 Extension of Range for Optical Flow Trackers

Since optical flow trackers by design is limited to tracking relatively small motions,
a few ways to make them handle larger motions could be desired. A couple of
methods extending their range are described here:

Subsampling the image to track is very common in combination with these
trackers. Subsampling by a factor always increases the trackablke bgrige same
factor. At the same time, subsampling reduces the amount of information in the
patch, making it easier to loose the tracked patch when too little useful informatio
remains in the patch.

Blurring the image to track is another way to increase the trackable range. It
works by removing high contrast areas in the images, and produces &aegs
with gradients. Unfortunately, it does not provide a directly proportioakdtion
between change of parameter and estimation of parameter for the full cdnge
trackable motion. The lack of proportionality is however not a deal brease
iterated tracking still yields the correct result fairly quickly.

A third way of increasing the trackable range is by making the differentiat-
ing kernel wider. If no blurring were applied, this way of increasing tlaekable
range would maintain a directly proportional relationship between the apgbed d
placement and the measured displacement. At the same time, this method is more
sensitive to noise and experiences more difficulties with textured areagr#ukn
ers using the smallest differentiating kernel.

Figure 7.3 shows the relationship between a real-world displacement of a
tracker, and the tracker’s calculated displacement after one iteratioa.infla-
ence of different amounts of blurring, and different lengths of thesdiffitiating
kernel can be seen.

43

7. Experimental Evaluation

blur=5, diff=3

measured displacement (one iteration)
[
[6)]
L]

o

0 1 2 3 4 5
true displacement

Figure 7.3: Measured displacement versus true displacement. “bleriades the
width of the blurring kernel, and “diff” denotes the width of the differentiating
kernel. The tracked object was a vertical edge.

7.1.5 Behaviour at Different Tracking Speeds

Here, an image was translated in a square pattern for five revolutionk. réas-
lution was performed with increasing speed. The results (image 7.4) argoed
at lower speeds (within fractions of a pixel). First at the highest spbedracker
without prediction started to loose accuracy.

Experience shows that the more parameters a tracker tries to estimate, $kee wor
it performs at these tests. The reason behind that is the interdepenuktn@en
all parameters solved by the tracker, and the fact that small estimatiors ener
unavoidable. It would hence be inexpedient to use trackers tracking coonplex
motion models than necessary.

44

7. Experimental Evaluation

130 — T T T 130 T T T T

128 | k 128 b

126 | k 126 b

124 | . 124 | .

122 | . 122 | .

120 | . 120 | L

118 L1 11 118 L1

158 160 162 164 166 168 170 158 160 162 164 166 168 170
(a) Downscaling 2 and prediction used (b) Downscaling 2 and no prediction used

Figure 7.4: Tracked centre coordinates of a patch in an image translatedeeds
of 0.1, 0.25, 0.5, 1 and 2.2 pixels/frame. One square path was followedlaioéa
those speeds, and the slowest speeds generated the paths most sinfiqusve.
As expected, tracking starts to deteriorate at 2.2 pixels/frame, since tha-co
sponds to movements >1 pixel/frame in the downscaled image.

45

7. Experimental Evaluation

7.2 Applications

7.2.1 Star Photography

One application taking advantage of sub-pixel resolution tracking coulothbe
tographing star constellations in the night sky. If that is done with an orginar
digital camera instead of through a telescope, the amount of light entering the
camera could be too small to get sufficient image quality. One solution available
besides acquiring a more sensitive camera includes using longer egosas.

A motorised support for the camera might then be called for, since the gedon
exposure time otherwise would blur the moving stars.

The solution tested in this section used a noisy low sensitivity cdmeosanted
on a standard tripod. About 130 consecutive pictures were taken afighé sky
using eight second exposure, aperture /2.8, and a sensitivity of0@OZhose
camera settings resulted in individual pictures where the brightest stagsvige
ble, but many stars were not perceivable in the noise.

If a fixed camera were capturing several images of a static scene, it Wweuld
trivial to decrease the impact of noise by averaging a large number ofredptu
images. When it comes to decreasing noise by averaging several imagesuof
ing scene, the difficulties increase. First of all, one has to model the deviaitio
the objects from their original positions. Secondly, artefacts such agthsi®
introduced by the imaging process (most notably projective distortionse!luhs-
tortion, and distortions caused by the atmosphere) might have to be dealt with.
When the movements of the objects in the image frames are known, those objects
could be warped back into their original positions in the first frame, making the
process of averaging noise out of the images trivial.

The process employed to determine the motion of the sky is outlined in this sec-
tion. The used model of the movements of stars was really simple: It is assumed
that the only possible deviations of the stars are caused by rotation. Imshacfi
quired image, bright spots were automatically selected as features forl djotrca
tracking. Those features was tracked, and only features equidistaattoother
throughout all frames were used to reverse the motion of the stars in méfa
The required condition that the distandg; betweenstar; and star; should be
constant throughout all frames is valid for all motions that can be modelladyas
combination of rotation and displacement. The motion of the equidistant stars re-
veals the centre of rotation, and then the angle of rotation is determined by{ollo
ing the star furthest away from the centre of rotation. The current impleatien
does however require an approximate centre of rotation to be enteredciltyaiou
determine the true centre of rotation. After the motion of the stars was revierse
all images, all frames were summed together, resulting in a brighter image with a
considerable decrease of noise. Much fainter stars than beforelw®dietected in
the enhanced image as seen in figure 7.5.

LA Panasonic FZ20.

46

7. Experimental Evaluation

3 Q A - e
¥ i ’ 5
it ‘. s
L . .
3 g
* Vi "
—,‘ 4 Z .- Aot
.
" . Tk <
o
£ K e
r
-
(a) first frame (b) after processing according to sec-
tion 7.2.1.

Figure 7.5: Virtually elongated shutter time by averaging several motiornpesm
sated exposures (100% crops of inverted images, with levels changeuetal
more details)

7.2.2 lterative Tracking

Iterative tracking has the tendency of increasing the accuracy ofitigckspe-
cially when optical flow trackers are used. A test application for experimgn
with iterative tracking was developed. The results of iterating tracking cbeald
seen in figure 7.1. That figure indicates that iteration generates bettéisrespe-
cially when linear interpolation is used internally by an optical flow tracker.

The main goal of this application was to allow the trackers to be iterated as
much as possible without having to drop frames, or making other applicatiens u
responsive. To achieve that, a design with two separate threads whs Bt
threads are depicted in figure 7.6.

The sole purpose of the first thread is to acquire images. That thread ente
a sleeping state until a new image is captured. Currently, it works when using
images stored on a hard drive, but whether it works with specific videdwsae
also depends on the kernel drivers for those particular captureegevic general,
the kernel should reschedule tasks whenever a thread waits for eedeadn
general, the proposed solution should work.

The second thread of the application is responsible for processingpalired
frames. The core idea is to use cooperative multitasking, where rouitisaksed
to select which tracker to run next. The tracker tracking the longest timevagtul
always be the next one executed. Additionally, the kernel is given theramity
to reschedule some other task every time a tracker has been executed:oUlth
ensure that the frame capturing thread could be woken up without hawivejttfor
an entire time slice to expire, at the same time as other tasks is given the opportunity
to function even though close to 100% of the CPU is used for iterated tracking

To prevent excessive waste of the CPU, there are methods that iralitriack-
ers could use to disable further iteration for itself until the next frame isivede
but the current trackers has not been modified to use that possibility yet.

47

7. Experimental Evaluation

NEW YES
FRAME?

NO

RUN PREDICTORS

DELETE TRACKERS
SLEEP UNTIL OUTSIDE FRAME
NEW FRAME |
STORE IN RUN ONE TRACKER
CIRCULAR {
BUFFER RESCHEDULE
(@) Frame capturing (b) Frame processing thread
thread

Figure 7.6: The two threads in the application

7.2.3 Tracking of Three Dimensional Boxes

An application to test tracking of three dimensional boxes was createdmiie-
mented box tracker was described in chapter 5, and some results froralitation
are presented here.

The idea was to use a calibrated camera and a box of known dimensions, mak-
ing it possible to determine the pose of the box by knowing the corners didae
of the box. In theory, it would be possible to track the box as it is rotated #ve
the tracker only was initialised with the first side of the box.

The optimistic attempt of only initialising the tracker with the first side of the
box turned out to not work in practice. Figure 7.7 shows a few snapdtwts
these experiments. Figure 7.7(a) shows the box when it was initialised, Afx) 7
shows the box right before using the box model to initialise the tracker fdethe
side. It can be seen that the deviation between the box model and thegblmgsic
still is small although it is present. Figure 7.7(c) shows a larger deviationdagtw
the physical box and the box model, which is propagated since the bakkrtiac
the box now is going to be initialised in the wrong way. Figure 7.7(d) finally show
when the tracker (solid lines) starts to loose tracking completely.

It turned out that the somewhat optimistic goal of only having to initialise track-
ing of the first side of the box, and let the tracker automatically initialise the other
sides whenever needed was not viable in practice. Small errors are aohjlfi

48

7. Experimental Evaluation

frame 1 (skipped 0)

frame 102 (skipped 0)

r
1
'
'
1
'
1
1
1
1
'
1
1
!
1
i
-

(a) Box and model, early frame. (b) Box and model, before switching to left side.

et

e
Bty

R
=G

Tt =,

(c) Box and model, before switching to back side. (d) Box and model, about to loose track.

Figure 7.7: Tracking of a 3D box. Solid lines show the borders of theerurr
tracker. Dotted lines show a projection of the box model.

perspective effects, and reliable tracking would require some methoduosahsit

a tracker is initialised correctly. | would recommend initialising all six sides of
the tracker manually. The deviations between the tracked box and the bat mod
would then be similar to the deviation in image 7.7(b). Alternatively, targets of
known positions and dimensions could be added to all sides of the box, to allow
automatic alignment of the box model before the box tracker initialises new-track
ers for new sides.

49

Chapter 8

Conclusions

8.1 Regarding Area Trackers

A variety of area trackers were implemented, and their time consumption was com-
pared to each other in section 7.1. Optical flow trackers turned out to Hadtest
trackers as expected. They are about 40 times faster then their cordasg SSD
trackers, while providing resolution in the sub-pixel range. On the othrdhop-

tical flow trackers have to be iterated somewhat when the tracker is jumpgey lar
distances (see section 7.1.3) to settle over the best fit, but optical flovetsaate
nevertheless far superior in regard of time consumption.

An interesting property of the optical flow trackers was the close to 10%reliff
ence in time consumption caused by two different ways of warping the inpgeima
leading to a selection of the slightly slower interpolating warp algorithm causing
a slight increase in precise tracking of small motions. Other possible choices
warping algorithms could have been nearest-neighbour warping, opasswarp-
ing.

It is also noteworthy that short-circuited SSD trackers exhibited improvésnen
in their average tracking time over the slow SSD tracker when neither was opti-
mised, whereas the slow SSD tracker sometimes is slightly faster then the short
circuited tracker when both are compiled with optimisations enabled. This indi-
cates that one might have to consider worse performance from theGiuwited
tracker than expected at the beginning of this work. The short circuitadker
could however be preferred if the complexity of the design is not a threat, a
spare computational time is useful for the application, even if only to deereas
power consumption. In mission critical systems, the computational resduaees
to be large enough to handle the worst case of almost no difference éd fge
tween using loop short-circuiting and ordinary SSD tracking.

8.2 Regarding Clustered Perspective Trackers
The idea of clustering several small trackers to track motion models which-the in

dividual trackers would not be capable of looked promising, but diddeditzer
any real performance increase. The test implementation only gave a 1fi%mga

50

8. Conclusions

computation efficiency when affine trackers was used to track pergpelititor-
tions (section 3.2.4). | would therefore not recommend the added complédxity o
these clustered trackers over using perspective optical flow tradkergly.

8.3 Regarding Star Photography

Merging of several images of the night sky to reduce noise was triedubeaaf

a pure personal interest. Other noisy image sequences might be mergedl as
to reduce noise if a suitable selection of initial trackers could be done (the sta
photography application automatically selected which stars to follow). Thetres
was a palpable decrease of image noise, and many stars previously irfdsible
naked eye could be seen in the merged image.

The star photography application was also thought to provide excelldist sta
tics of time consumption of different algorithms and functions. It turned cait th
gproft only sampled which function the program was occupying every 10 ms,
which was far too slow to generate useful statistics when each trackenefthis
in much less then a millisecond. The use of i sc instruction was then inves-
tigated and made it possible to measure time consumption of sections of code at
much higher accuracy, with a resolutfoof a single CPU core clock cycle.

8.4 Regarding Tracking of Three Dimensional Boxes

An attempt to track the pose of three dimensional boxes was made without initialis-
ing more than the tracker for the front surface of the tracked box. Quactical

use, it appeared as if the deviation between the model and the physicalasox
doubled each time the system initialised a tracker for a new surface. Thasritak
necessary to either initialise all sides of a tracked box before trackingriectar
provide some other mean of the tracking system to determine the corner p®sition
for each new side of the box.

8.5 Regarding Line Tracking and Detection

An edge tracker based on the approach in [9] was constructed. kxtasded to

be able to handle tracking of lines, and the ability to determine endpoints of the
tracked line was also added (section E.1). Endpoint detection was neliade

as desired, but worked nevertheless in many circumstances.

Additionally, a line detector using the Hough Transform was implemented.
That detector precomputed and saved several intermediate valuesthatich-
peated use of the detector for equally sized patches would be faster.al#ois
shown that detecting lines using the Hough transform for full frame vid®wean
days is very close to possible in real time even with unoptimised code. By using
8x8 patches, the number of additions to an accumulator was reduced 72 ¢imes f
images with a resolution of 320x240 pixels (section E.2.1). Future workidbau

!see the gprof man pages for more information
2Although accuracy could be expected to be in the order of 28-255 cladks:

51

8. Conclusions

done to merge those individual segments into continuous line segments toajain re
benefits in line detection.

52

Bibliography

[1] S. Benhimane, E. Malis, “Real-time image-based tracking of planes using
efficient second-order minimizationRroceedings of 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Syst&aptember 2004, pp.
943-948

[2] Jean-Yves Bouguet, “Camera Calibration Toolbox for Ma@gblast visited
2007-02-22:
http://www.vision.caltech.edu/bouguetj/calib_doc/

[3] Scott A. Brandt, Christopher E. Smith, Nikolaos P. Papanikolopouitise
Minnesota Robotic Visual Tracker: A Flexible Testbed for Vision-Guided
Robotic Research”Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetit994, pp. 1363-1368.

[4] David Claus, “Camera Location”, last visited 2007-01-17:
http://www.robots.ox.ac.uk/~dclaus/cameraloc/cameraloc.htm

[5] Paul D. Fiore, “Efficient Linear Solution of Exterior OrientationlEEE
Transactions on Pattern Analysis and Machine Intelligenad 23, no 2,
February 2001 pp. 140-148

[6] Agner Fog, “1. Optimizing software in C++: An optimization guide for Win-
dows, Linux and Mac platforms”, last visited 2007-02-20:
http://www.agner.org/optimize

[7] James D. Foley et al., “Computer Graphics. Principles and PractideE@i
tion in C”, Addison-Wesley, 1996, ISBN 0-201-84840-6

[8] Rafael C. Gonzalez, Richard E. Woods, “Digital Image ProceSsiBecond
edition, Prentice-Hall, 2002, ISBN 0-201-18075-8

[9] Gregory D. Hager & Kentaro Toyama, “X Vision: A Portable Substrae
Real-Time Vision Applications.”Computer Vision and Image Understand-
ing, 69(1):23-37, 1998.

[10] G. Hager, P. Belhumeur, “Real-Time Tracking of Image Regions with
Changes in Geometry and lllumination”, last visited 2007-01-17:
http://www.cs.brown.edu/courses/cs143/GuestLectures/Joe_Mundy/
hager-belhumeur.pdf

53

BIBLIOGRAPHY

[11] G.D. Hager, P.N. Belhumeur, “Efficient region tracking with parametrod-
els of geometry and illuminationlEEE Trans. Pattern Anal. Mach. Intell.
v20 i1Q October 1998, pp. 1025-1039.

[12] Chris Harris and Mike Stephens, “A Combined Corner and Edgediate
Alvey88 pp. 147-152

[13] R.Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”,
Cambridge University Press, 2000, p. 22, ISBN 0-521-62304-9

[14] D. Kragic and H. I. Christensen , “Tracking Techniques for disBervoing
Tasks”, Proceedings of the IEEE International Conference on Robotics &
Automation April 2000, pp. 1663-1669.

[15] J. Shi and C. Tomasi, “Good Features to Trackd94 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR;9994, pp. 593 - 600

[16] Bjarne Stroustrup, “Programmeringsspraket C++”, 3'rd editipr7,87-789,
ISBN 0-201-67504-8

[17] Roger Y. Tsai, Thomas S. Huang, “Estimating Three-Dimensional Motion
Parameters of a Rigid Planar Patch, II: Singular Value DecomposiliBEE
Transactions on Acoustics, Speech, and Signal Processm@éSSP-30, no
4, August 1982, pp. 525-534

[18] “AMD Athlon™ Processor x86 Code Optimization Guide”, Publication
#2207, Rev. K, Advanced Micro Devices, Inc. February 2002

[19] “Software Optimization Guide for AMD64 Processors”, Publicatiob#22,
Rev.3.06, Advanced Micro Devices, Inc. September 2005

54

Appendix A

Affine Approximations of
Projective Transformations

This chapter describes how to derive affine approximations to pergpdciins-
formations. Affine transformations are capable of approximating thetsftefca
perspective transformation. The approximation works best for smakasaand
the steps to derive the approximation around some arbitrary pginf, are de-
scribed below.

Consider a perspective transformation

w'x! hi1 hiz his z
w'y' | = | har hoe hos Yy
w' h31 h3za hs3 1

which we want to approximate as an affine transformation

a:’ ailr a12 tw X
y | = | an axn ty Y
1 0 0 1 1

The approximative affine transformation should have some propertiesnmoo
with the perspective transformation:

e Equivalent midpoints:, v,

¢ Identical behaviour in an infinitesimal surrounding to the midpoiats can
be achieved by equating derivatives in that point

Those properties listed above gives us the following equations fromfthe ains-
formation:

ox'
Sz
ox'
Sy
oy
o

= an

= a12

= a21

55

A. Affine Approximations of Projective Transformations

oy

@ = a2
ty = x4 — (anzo + ai2yo)
ty = yo— (@212 + a22yo)

Note that there are no higher order derivatives available from theedffamsforma-
tion, telling us that the approximation problem can be seen as a first orgler Ta
series expansion of the perspective transformation.

Combining the equations above with the following equations obtained from the
perspective transformation

ox' , , ,
%(%ayo) = (h11 — 2phs1)/wy
) = (2 — o)}
W) = (o — o)
U (ehosh) = (haz —)

would then give us an affine approximation of the perspective transfamealid
in the pointzy, y{, and its closest surrounding:

z a1l aia tg x
y | = | an axn ty Yy
1 0 0 1 1

where the parameters (giveq, yo) would take the following values:

wy = ha1wo + haayo + ha3

xy = (huwo + hiayo + his)/wg
yo = (ha12o + hoayo + has)/wy
air = (hi1 — apha)/wy
aiz = (hi2 — xpha2) /wy
a1 = (ha1 — yphs1)/wy
a2 = (haa — yphs2)/wy

te = x(— (a11@0 + a120)

ty = Yo — (a21w0 + a22yo)

56

Appendix B

Decomposition of a Projective
Transformation

As mentioned in [13], a projective transformation can be decomposed itfitaia ¢
of transformations:

sR t K 0 I 0 A ot
HZHSHAHP:(OT 1><0T 1>(V—r v>:<v—r v>

whereA = sRK +tv', andK is an upper triangular matrix fuffillinget (K) = 1.
That decomposition is valid as long as# 0, and is unique as long asis
chosen positive. The algorithm chosen for this decomposition is desdréded:

1. if(hgy <O0) H = —H
2. v = hss

3. V= [ha) haa] "

4.t =L {hz hos)"

hit hi2

5. L =sRK =
y <h21 hao

) —tv’ (L determined from known variables).

6. Writing out the newly acquired = sRK, we can set up an equation system:

RIDRIEE

Here,r; andl; are the two columns of the rotation matrix and thenatrix
of the equation above.

sria =14
srib+ sroc =19
Using|r;| = 1, we get
sa = |l

57

B. Decomposition of a Projective Transformation

and hence
Iy
sSa

N =

continuing, multiplying the second equation of the system to the left/by
using some properties of the rotation matrix, namely that= 1 and that
the two columns are orthogonal (i.qTrj = 0 wheni # j), we get

sb = I'Ilg

now, using
Ssclrg = |2 — Sbl’l

taking the norm of both sides gives
sc=|(lg — sbry)]
and we then also get .
ro = g(lz — sbry)

and hence the rotation matrix has been determined. We also knows the en-
tries of theK matrix up to scale, but since we know th&t(K) = ac = 1,
we can determine and the correcK

S =/ Sa sc

1/ sa sb
K_s< 0 86)

All entries in the decomposition have now been determined.

58

Appendix C

Optical Flow Estimation

Construction of optical flow trackers relies on thenstant brightness assumption
That assumption states that the brightness of any point of a tracked sh{mdd
remain constant during tracking. Only the positions of the points are allowed to
change. For an individual point with positiot(¢) at timet in an imagel(t), the
constant brightness assumption for a single point can be expressed. gs (

dI(x(t),)
dt

The simplest and most straightforward way to derive the equations raegdes
optical flow tracking does actually not include any equations derivegh ftioe
SSD equation (2.1) directly. It does instead involve calculation& B8R (C.2),
the summed squared deviation from the constant brightness equation I§GvE) a
Note that when certain conditichare met, the SSD equation (2.1) and &R
equation (C.2) will give identical values. The weighting functio(x) is inserted
to accommodate for weighting of pixels if needed.

=0 (C.1)

— 2
ERR=)_ (C”(’;(f)’t)> w(X) (C.2)

all x

A thoroughly explained derivation of an optical flow tracker for trackofgrans-
lations will be found in the next section, and briefer examples for trackingemo
complex movements will be presented in the subsequent sections. [9]@radda
contain examples of simple optical flow trackers.

All optical flow trackers in the following sections share the property that
the equations for optical flow tracking was determined by differentiatingaequ
tion (C.1), and then putting the result in theR R equation (C.2). Then the minima
of FRR was determined by differentiating RR with respect to each parameter
to determine, and then equating the resulting equations to zero. Solving tifte res
ing equation system would give an approximation of the parameters whicld wou
minimise theE’ RR equation.

!Requirements for ERR equal to SSD: Identical placement of the poiatsfasevaluation of the
sums; Time derivatives evaluated by comparison of first and cuiemsity for points; Omission of
variabler which would scaleF RR if time between frames not set 19 Use of identical weighting
of pixels in both SSD an@ RR calculation.

59

C. Optical Flow Estimation

Coordinate Systems

One important property to consider about optical flow trackers is thatdhlgycan
track small changes of the tracked patch relative to the used referatwde [hat
means that the camera image has to be warped using the last known tracked pa
eters into an image close to the reference image before tracking. Thendkersra
resulting correction parameters would need to be warped before théigsapp
the patch as seen by the camera. Figure 2.1 (page 6) shows those atmosyis
tem transformations together with additional transformations needed if thettac
patch is downscaled by the tracker.

C.1 Tracking Translations

This is a thoroughly explained derivation of a tracker capable of followiagsla-
tions. Starting by differentiating equation (C.1) yields

dI(x(t),t) _ 6I(x(t),t) 6 N 6I(x(t),1) oy N 0I(x(t),t)
dt ox ot oy ot ot

(C.3)

Making the following substitutions in the formula above while lettindenote the
interval between consecutive frames

oI(x(t),t) I(x({+7),t+7)—1(X(t),1)
ot ~ T

oz Az

ot 7

oy Ay

5t T

yields
dI(x(t),t) _ 0I(x(t),t) Ax 6I(x(t),t) Ay
dt - ox T + oy T
I(i(t+7‘),t+7_7') — I(x(t),t) (C.4)

Now an assumption that unfortunately limits trackable movements to less then
one pixel (unless downscaling or excessive blurring is used) has twibe. It
involves assuming that the intensities at frahfg) is close to the intensities in
frameI(ty). This will be true as long as the tracker did not loose the tracked object
in the last tracking iteration, and the brightness of the tracked points remained
constant. The consequences of the assumption is/tlsdt),t) ~ I(x(t¢o),to),
UEIUGRIPS Ux(t0)to) ang that IEW: 3X(to)t) That makes it possible to

T ox oy oy
rewrite equation (C.4) as

(.1 SI(xllo),to) A SI(x(t0),t0) Ay |
dt ox T oy T
I(f((t—f—T),t—l—T)—I(f((to),to) (C5)

60

C. Optical Flow Estimation

Introducing some notations to make the expressions more compact
(5[()_((t0), to)

L= ox
dI(x(to),
I, - (E;;J) to)
I = I(x(to),to)
Iyarp = Ix({t+71),t+7)
w w(X) (C.6)

makes it possible to write the RR equation (C.2) as

1 2
ERR= 3" (AT + 1Ay + Tuary — 1) w (C.7)

all x

To find the minimum ofF RR, one has to differentiate it with respect to the vari-
ables to determine, namelix and Ay, and then set the resulting derivatives to
zero as in equation (C.8) . The variablevas also set ta to facilitate comparison
with results derived from the SSD equation.

0ERR
SAr - Zal%ilx (IzAz + IyAy + Lyarp — Hw =0
0ERR
Ay = 2 g I, (I.Ax + IyAy + Lyarp — Hw =0 (C.8)

all x

In the two equations above, onAz, Ay) is unknown, and everything except
Ivarp Was known when the tracker was constructed. One could rearrange tho
equations to

o[Bl LI [80 1\ 5= (o [e (= Tuary) D
%;(|: Iylx Iny :| |: Ay :|) C%;(|: Iy (I* I’war‘p) (Cg)

which also can be expressed as

ATW Ac = ATWb (C.10)
by selecting
B
A= | I I,
L
N 0
W = w
| O AN
_ Az
c = Ay
|
b = (I_Iwarp)

C. Optical Flow Estimation

The movement = (Az, Ay)T can easily be solved as
[Az

-1
Ay] =c=(ATWA) ATWb

The residual, which is the change of intensity which could not be explaindaeb
solved parameters, can be computed as

r=vVWb— (VIWA)c

From the residual, it is easy to calculd& R, which is the summed squared devi-
ation from the constant brightness equation:

ERR=r"r

If it instead would be more interesting to calculate the SSD, that could be done in
two slightly different ways.

Firstly, assuming that all pixels in the tracked patch on average would con-
tribute with the same amount to the SSD, it could be evaluated as
SSD = r’r/(>-w). That method has the side effect that errors further away
from the centre of the patch would not contribute as much to the SSD as error
close to the centre of the patch (with Gaussian weighting). Whether thatdsagoo
bad is difficult to determine, but as the erd®BiR R which the tracker minimises is
directly proportional to this way of calculating the SSD, it could be consitiare
advantage.

Secondly, it is also possible to determine the SSD by ignoring weighting at all,
when the residual is calculated ms= b — Ac. That would make the calculation
as simple as$SD = r’r. That result could get normalized by dividing it by the
number of pixels in the tracked patch if wanted.

Solution steps

Here, the precalculated matrices &’ W A)~"*ATW, VW A, andvW. Note
that W is diagonal, and the reduced number of computations needed when multi-
plying it with other matrices is used in the table. N in the tables is the total number
of pixels in the tracked patch.

Calculation multiplications additions subtractions
b= (I — Iyarp) N
c=((ATWA)~1ATW)b 2N 2N —2

r=+vWb-— (VIWA)c 3N N N

total sum (excluding residual): 2N 2N —2 N

total sum (including residual): 5N 3N —2 2N

It is quite notable that only one subtraction, two multiplications, and two additions
per pixel are needed to solve for translation using optical flow.

C.2 Tracking Affine Transformations

In this section, equations for tracking an affine transformation are elriincre-
mental changes to the affine transformation is described by two functiars]g,

62

C. Optical Flow Estimation

such that the warping of points;, v) into (u/,v") are described by the following
equation:

[o] _ [flai1, a12,ty, u,v)] _ [a11u + ajev +ty, (C.11)

!
v g(aa1, a2, ty,u,v) as1u + axv + t,

Note thatu andv denotes affine positions relative to the centre of the tracked patch
in the initial frame. Most often the patch in the initial frame is considered to have
an identity transformation, such thatandv coordinates coincides with andy
coordinates relative to the centre of the tracked patch. That would in tuke tpa
andt, relative to the(x, y) coordinate system as well.

Also note that the process used are going to solve for incremental change
as the optical flow algorithm always compares the current frame with timeefra
just before the current frame. (Actually, assuming that the neither thketréast
track of the target, nor that the constant brightness assumption broKegrtejust
before the current frame could for our intents and purposes be @psiidentical
to the very first frame).

Making the assumptions required to get equation (C.5), and using the netation
introduced as equations (C.6) makes it possible to wWEit&R as

1 2
ERR = =S (R+Lparp—1 c.12
T all X (i ") v ()
whereR = (IuAtu T I,At, + ul,Aay; +

vl Aays + ul,Aasy + UIUAam)

Here, I,,, I, coincides withl,, I, if the patch in the initial system had its, v)
system coinciding with théz, y) coordinate system.

Settingr to 1 and locating minimum oF R R by derivating (C.12) with respect
to the parameters to find yields this equation system:

5(?5? - zal;(fu (R + Lyarp — Hw =0
5555% - 2%;% (R + Lyparp — Dw =10
giff = 2 QUZ;“Iu (R + Lyarp — Hw =0
iiff = 2 %vfu (R4 Lyarp — I)w =0
(;ifj = 2 %“Iv (R + Iyarp — Hw =0
iifj = 2 al;_{”]v (R + Lyarp — I)w =0

63

C. Optical Flow Estimation

This system can be written shorter as

ATWAc = ATWb (C.13)
where
L
A = I, I, ul, vI, ul, v,
A R A R A A
SN 0
W = w
L 0 AN
F AL, T
At,
c — Aan
B Aaiz
Aagy
| Aagy |
[\
b = (I — Iyarp)
I \

and the solution would simply be
c=(ATwA) " ATWDb

where(ATW A)~t ATW can be precomputed. The residual, which is the change of
intensity which could not get explained by the solved parameters, camigeuted

as
r=VvVWb— (VWA)c
From the residual, it is easy to calculd& R, which is the summed squared devi-

ation from the constant brightness assumption:

ERR=r"r

Solution steps

Here, the precalculated matrices dre’ W A)~'ATW, VWA, andvW. Note
thatW is diagonal, and the reduced number of computations needed when multi-
plying it with other matrices is used in the table. N in the tables is the total number
of pixels in the tracked patch.

Calculation multiplications additions subtractions
b= (I — Iyarp) N
c=((ATWA)LATW)b 6N 6N —6
r=+vVWb—VWAc TN 5N N

total sum (excluding residual): 6N 6N —6 N

total sum (including residual): 13N 1IN -6 2N

64

C. Optical Flow Estimation

C.3 Tracking Affine Transformations (two step approach)

Tracking of affine transformations using the steps in the previous seatonch
considered to be the best way of tracking affine transformations in real [€]

describes a different approach, where displacement and rotatialetenined in
a first step, before the other parameters are determined. The redsiod bet is
very simple.

During normal circumstances, displacement and rotation of the trackectobje
changes more often and faster then scaling and shear of the same oljéne A
same time, determination of scaling and shear suffer more easily from laek of d
tails in the tracked patch, making them more prone to contain errors. If all the
affine parameters were solved in one step, the errors introduced inaliregsand
shear parameters would automatically introduce corresponding errors idigh
placement and rotation parameters. To promote a better solution of displaécemen
and rotation, the solution was split into two steps. The first step only solves fo
displacement and rotation, while the second step only solves for scalirghaad

Construction of this two-step tracker begins by looking at the equation ior th
type of affine transformation. Normally the incremental transformation woald b
described by:

, U
["5,] =AA| v | ,whereAA = {
1

Aan Aa12 Atu
Aas; Aasy At,

This time, we consider rotation, scaling and shear separately. Rofataam dur-
ing small incremental updates be approximated linearlyAt:

0 o O

AR:[—@ 0 0

] , Wherea ~ 0
Incremental scaling and shear could in turn be described as

. Su Y 0 ~ ~ ~
AS_[O 5 0] , Wheres,, ~ 1, s, ~ 1,andy =~ 0

And incremental translation could be described as

OOtu]

At:[o 0 t

The incremental affine transformation describeddf + AS + At could thus
be described by two functiong,andg, such that the warping of points, v) into
(u’,v") are described by the following equation:

v v se sty 1T swau 4+ (et 4+t
)| = = (C.14)
v g('LL,'U,Oé,SU,tU) —au + Sy + i,

Differentiatingl (uv/, v") = I(f(u,v, @, Sy, 7, tu), 9(u, v, @, 8y, t,,)) justas in equa-
tion (C.3), and using the notations introduced in equations (C.6) yields

ﬂ _ df(f(u,v,a,su,’y,tu),g(u,v,a,sv,tv)) ~

dt dt

65

C. Optical Flow Estimation

lfu (suAu + (a0 + v)Av + vAa + uls, + vAy) +

-

lfv (—aAu + s, Av — uAa + vAs,) +

p

1

— (warped = 1) (C.15)

Here, I, I, again coincides withl,, I,, if the patch in the initial system had its
(u,v) system coinciding with théx,) coordinate system.

Assuming small differential changes, we canset= 1, s, = 1, « = 0 and
~v = 0 to linearise the system around that point. Then inserting (C.15) into the
ERR equation (C.2) while setting to 1 yields:

ERR = Z (Iu(Au + vAa + uAs, + vAy)+

all x

I,(Av — uAa + vAs,) +

2
(Tvarped — I)) w(x) (C.16)

Differentiating equation (C.16) with respect to each parameter to solvadiatsy
this system for minimizing“ RR.

ATW Ac = ATWb (C.17)
where
] | | I
A = I, 1, (vl,—ul,) ul, vl, vl,
L | [
N 0
W = w
0 AN
C At T
At,
c — Ao
o AS,
AS,
A
[|
b = (I — Lparp)
i |

If the system is solved directl¥; R R will be minimised, but then less then optimal
values are more likely to be chosen for displacement and rotation. Thenreas
is that scaling and shear are more prone to be solved slightly incorrect.n Whe
solving for those parameters and for displacement and rotation at the same time
the errors in scaling and shear would induce corresponding erroisptadement

and rotation, thereby degrading their accuracy.

66

C. Optical Flow Estimation

By solving the equation system in two steps, the accuracy of the displacement
and rotation parameters can get enhanced. The first step solving onigitace-
ment and rotation:

LTWLd=L"Wb ,resultingin d= (LTWL)"'LTWb

where
1 |
L = I, I, (vl,—ul,)
L |
[Au
d = Av
| Aa

Then the second step solves for scaling and shear while using the resuilthfe
first step above:

R™WLILd+ R"WRe =R"Wb
resultingin e = (RTWR)™'RTW (b — Ld)

where
o
R = ul, vl, vl
I
[As,
e = As,
| A

Solution steps

Here, the precalculated matrices &f¢ W L)~'L™W, L, (RTWR)"'RTW, R,
andvWW. Note thaty/W is diagonal, and the reduced number of computations
needed when multiplying it with other matrices is used in the table. N in the tables
is the total number of pixels in the tracked patch.

Calculation multiplications additions subtractions
b= (I — Iyarp) N
d=(L"WL)"'L"Wb 3N 3N —3

M =Ld 3N 2N
e=(RTWR)"'RTW (b — M) 3N 3N —3 N
r=+VW (b— M — Re) 4N 2N 2N

sum (only translation and rotation): 3N 3N -3 N

total sum (excluding residual): 9N 8N — 6 2N

total sum (including residual): 13N 10N — 6 4N

Comparing the number of operations required for tracking between thigetrand

the other affine tracker in section C.2 reveals almost no difference in theeof
computations when both the solution and the residual is computed. If theaksidu
is not needed, the other tracker does however have noticeably f@eeatmns.
Another interesting property made clear in the table is the low number of opesatio
needed when solving for translation and rotation only.

67

C. Optical Flow Estimation

C.4 Tracking Perspective Transformations

It is possible to extend optical flow tracking to be able to handle perspetiine-
formations as well, as will be demonstrated in this section. A perspectivédrans
mation could be described by

u || f(man, mag, mag, may, mag, mas, u,v)
v’ g(ma1, ma2, ma3, m31, M3z, M33, U, V)
| (miru+ migv 4+ ma3)/(m31u 4+ maav + ma3)
_ (C.18)
(ma21u + magv + mag)/(Mm31u + mazv + m33)

Note thatu andv denotes affine positions relative to the centre of the tracked patch
in the initial frame. Most often the patch in the initial frame is considered to have
an identity transformation, such thatandv coordinates coincides with andy
coordinates relative to the centre of the tracked patch.

Also note that the nine entries;; only can be determined up to an unknown
scale factor, making it possible to fix entiryss to 1, while scaling the other entries
accordingly (this requires thatss # 0, if that can not be expected, an alternative
would be to normalizé// such thatlet(M) = 1).

Making the assumptions needed earlier to get equation (C.5), and using nota
tions introduced in equations (C.6) makes it possible to writeR as

1 2
E = - Tyarn — 1 A
RR - > R+ Iyarp — I w (C.19)

all X

where

1
R = Iu<—(uAm11 + vAmig + Amlg)
C3

+ g;(UAmiil + UAmgg)

1
+1 <6(UAm21 + vAmaz + Amaz)
3

C

+ J(uAmgl + UAmgg) (C.20)
Cs

Here, I,,, I, again coincides withl,, I,, if the patch in the initial system had its

(u,v) system coinciding with théz, y) coordinate system. Also note that equa-

tion (C.20) above contains these abbreviations:

Cy = —(muu+ migv+mi3)/Cs
Cy = —(maru+ magv +ma3)/Cs
C3 = mziu+m3v+1

wherem;; at initialisation usually would correspond to an identity matrix. Setting
7 to 1 and locating minimum off RR by derivating (C.19) with respect to the
parameters to find yields this equation system:

ERR
5Am11

Iu
= 2) au(R—l—Iwmp—I)w:O

all x

68

C. Optical Flow Estimation

OFRR
5Am12

IERR
5Am13

0ERR
5Am21

OERR
0Amoy

OERR
0Amo3

JERR
5Am31

ERR
5Am32

Iy
23 o0 (Rt Lary = Iw =0

all x 3

2203 (R + Lyarp — Dw =0

all x

2> &

all x

225”11(73”%@—1)10:0

3

all x
2 Z R + Iwarp -
all x
I C’1 I Co
2
> (&t
I 01 I 2C2
2
Z (Cs

all x

This system can be written shorter as

where

ATWAc = ATWb

I
<
&
—~~
»
S—
\ ~
&

([

S & N~
OO
~— \x/ ~
K
X

= ap az

R + Iwa/rp

as

69

a4 a5

Hw=0

Nw=0

ae

ar ag

u> (R + Iparp —Nw =0

|

v) (R + Iyarp — Nw =0 (C.21)

(C.22)

C. Optical Flow Estimation

i Am11
Amlg
Amlg
Amgl
AmQQ
Amog
Am31
ATTlgg

|
b = | (I lLuamp)

and the solution would simply be

c=(ATwA)1ATWD
The residual could be calculated as well, and is equal to

r = VW (b — Ac)

Solution steps

Here, the precalculated matrices du&’ W A)~'ATW, A, andv/TW. Note that

VW is diagonal, and the reduced number of computations needed when multiply-
ing it with other matrices is used in the table. N in the tables is the total number of
pixels in the tracked patch.

Calculation multiplications additions subtractions

b= (I — ILyarp) N

c=(ATWA)~1ATWD 8N 8N —8

r= VW (b — Ac) 9N TN N

total sum (excluding residual): 8N 8N —8 N

total sum (including residual): 17N 15N — 8 2N
Issues

The abbreviations”;(u, v) used while creating the precalculated matrices need
some discussion. Since ea€h(u,v) contains elements from the homography,
they add yet another approximation to the tracker. During tracking theiesalu
depend on the pose of the tracked plane and they are not constasuatedsby
the construction of the tracker.

Analysing the problem further revealed that the influenc€'péan be regarded
as a weighting, which would not affect the tracking except for the fewlpiwhere
the current sign of’3(u, v) differ from the sign of the initialC’; (u, v). The real
issue is that’; and(Cs affects the tracker, but mainly thes; andmss parameters.
The problem is not visible while observing a tracker in progress, but fikesdy it
affects at least the convergence rate of these trackers.

In practice, the current tracker works well when the tracked surfacet ro-
tated away from the camera too much. This approximation is however not good

70

C. Optical Flow Estimation

enough in some applications when the tracked surface is rotated up to @&sleg
relative to the camera. There are three ways to handle this. The chosen op
was to do nothing. Alternatively, the precalculated matrices of the trackebea
recalculated whenever the surface has been angled more then sortamtangle
away from the position which was used the last time the matrices was updated.
That would count as a quick and dirty fix and should preferably be adboidhe

third way of handling these elements is by completely redesigning the trackker, a
possible alternatives may be found in both [11] and [1].

C.5 Intuitive Description

Earlier in this chapter, relationships necessary for calculating opticaiMiaside-
rived. Those derivations were focused entirely at finding solutiortstbald min-
imise the deviations from the constant brightness assumption. As a conseque
the resulting equations for optical flow tracking were justified only mathematically

To make up for the lack of intuitiveness in the mathematical derivations, this
section is going to try to intuitively describe how optical flow tracking works by
providing some examples. To avoid making this example too cluttered with details,
the translation tracker from section C.1 is going to be used as an example. Tha
tracker is tracking only two parameterdz and Ay. Expanding the results for
any number of parameters is however straightforward. The system te fmlv
optical flow was described in equation (C.9). That equation system isitexpe
here without weighting for reference:

S 11, lefy Az | I, (I—Iwarp)
Y Iyl Yo Iyl } [Ay } a [> Iy (I = Luarp) (€23)

Each individual summation is performed for all pix&lf the tracked patchy is

the original patch, and,, is the image obtained by warping the currentimage us-
ing the last known tracker parameters (x andly)and], is the x and y-derivatives

of the original patch, and can be considered to be two motion templates.

One Parameter

If the tracker was supposed to only track translations in the x-directioeghation
above could be written as

ArY LI = L(I = Luarp) (C.24)

That equation above could be visualised for particular cases, sucle as¢hin
figure C.1 where the warped image was translated one pixel to the right. Putting
the images from figure C.1 into equation (C.24) would result in

71

C. Optical Flow Estimation

(a) I (inputimage) (b) I, (x-derivative) (c) I, (y-derivative)
255
127
0

-127
-255

(d) Iyarp (image trans- (e) I —ILyarp (changeinin- (f) Intensity key

lated 1 pixel to the right) tensity)

Figure C.1: Image/ and derivatives, and,,,, which is translated one pixel in
positive x-direction.

Observe that unpadded convolutiar) 6f two images is identical to the sum-
mation of the product of pixels at the same position in both images. Performing
that convolution yields

292 612.5Ax = 2926125 — Az=1

which agrees with the one pixel displacementgf,,. Looking atl — I,,,,, for
fractional displacements in figure C.2 makes it quite clear that the resulting

is directly proportional to the displacement in the image, as the size of the areas
involved in the convolutions is directly proportional to the displacement.

When central difference is used to calculate derivatives would get values
directly proportional to the displacement for translations up to one pixeltr&os-
lations between one and two pixels, the calculatedwould have the right sign,
but not the right magnitude. For translations of two pixels or more, the cadzlila
Ax would be completely uncorrelated to the translation in the image, unless the
image contain gradients spanning larger areas.

The paramete} _ I,.,, from equation (C.24) is a constant, originating from the
formal derivation of this particular optical flow tracker. That constamgiees as
this example showed, that the solved optical flow parameter is close to iddatical
the motion of the tracked object. It is known that a motion template multiplied by
the magnitude of its parameter would equal the change in intensity caused by tha
motion (with small variations depending on how the derivatives were calc)late
That would imply that

LAz =~ (I — Lyarp) (C.25)

Multiplying each pixel byI, in the equation above, followed by summing both
sides would yield equation (C.24), thereby verifyihg I, I, as the correct con-
stant.

72

C. Optical Flow Estimation

(a) displacement=1.0 (b) displacement =0.5 (c) displacement =0.25
(d) displacement=0 (e) displacement =-0.5 f) I

Figure C.2: I — I,y for a few different displacements. The outlined regions is
the part shared with,. Only that shared part contributes o’ 1,,(1 — Iiyarp) in
equation (C.24).

An observant reader might assume that the motion templafiigure C.1(b))
has to be identical té — I,,4,,, (figure C.1(e)). The deviation between those two
images derive from the fact that a central difference was used tolatdy. To
maintain correct results from algorithms, the central difference must baracq
by convolving the input image with the kern@IO.S 0 —0.5] as the created
motion template otherwise would correspond to a two pixel displacement.

Two Parameters

Back to the example, one sooner or later is faced by solving for more than on
parameter. Assuming that a second parameter could be calculated in the same
manner as a single parameter, that would give us these two equationktdatag

both parameters:
(O Laly)Az =3 Io(I — Lwarp)
(O Iyly)Ay = > " Iy(I — Lwarp)
This solution is going to work poorly, or not at all depending on the tragiadh.
The problem is that motions described by any single parameter will introduce
errors into the calculation of the other parameters. In our case, the mxterfs
the tracker to trackAy would result in incorrect evaluations éz. That problem
is illustrated below wheré\z is calculated for a patch translated one pixel in the
positive y-direction. The wanted result would be no changA:n but there was a
big change. Figure C.3 shows intermediate values for a translation in yidivec

Here equation (C.24) was used to calculate without knowledge about y-
translations for the patch in figure C.3. That patch was translated 1 pixegin th
positive y-direction.

C. Optical Flow Estimation

(a) I (inputimage) (b) I, (x-derivative) (c) I, (y-derivative)
255
127
0

-127
-255

(d) Iyarp (image trans- (e) I —Lyarp (changeinin- (f) Intensity key

lated 1 pixel to the right) tensity)

Figure C.3: Imagel and derivatives, and,,,, Which was translated one pixel in
positive y-direction.

Performing the calculation above yields

292612.5Az = 130050 = Az~0.44

As can be seem)z would not equate to zero, as the undetermined motion in y-
direction interacts with the motion template used to determine motion in the x-
direction.

Making the assumption that the true translation in y-direction would be known,
one would face the problem of determining the influence of a known
y-displacement on the calculated value of the x-direction. The equation
system (C.23) (from the theory in section C.1) holds the key to these intamdep
dencies. The relevant part is repeated here for reference:

Az Ll +Ay» ILly=> LI = L)
Still pretending that we knowAy, we could directly calculaté\xz from the equa-

tion above:
Az Z LI, = Z L (I = Lyarp) — I,Ay)

There is a simple way to think of that correction. It simply states that you could
subtract/, Ay from any difference image to cancel out distortions caused by the
motion Ay. The same holds for any other motion template multiplied by its pa-
rameter as long as the motion compensated for is in the sub-pixel range.

74

C. Optical Flow Estimation

Another understanding of correlation could be found by looking at theninga
of the factor) _ I,.1,,. Evaluating that for the triangle example used throughout this
section yields:

As seen in the image abovg, I,I, leaves us with a large negative number
in this case, which occurred mostly because of a large common diagotiainpor
where the motion templates had opposite values. Any response in the differen
imagel — I,.p, Would affect both parameters in that common region, regardless
of which underlying motion that caused the response.

Setting up an equation system for simultaneous solutiahzofind Ay makes
it possible to calculate a solution which is compensated for dependenciesdpetw
the parameters. For that system, it is preferable to keep the parametdesilasa
in equation (C.23).

Yol Y I,] [Az] _ [oI (I — Iyarp)
LI, Y I, Ay Yo Iy (I = Lyarp)

All parameters from the equation above should now be familiar:
> 1,1, - purely a constant scaling factor

> I.I, - constant factor which compensates for mutual interference between
motion templates.

Ax andAy - parameters to calculate
1, Motion template for motions in x-direction
I,, Motion template for motions in y-direction

I — Iyarp difference image

75

Appendix D

Notes about NOMAN

NOMAN is a shared code repository for work at tBemputer Vision and Active
Perception LaboratoryCVAP) and theCentre for Autonomous Systerhsth part

of the Royal Institute of Technolog§KTH). NOMAN mostly contains reusable
C++ classes, and is a valuable resource. During my usage of NOMANEg sb
those classes has been expanded with new features or improved in ajger w

The following sections include suggestions for improvements to NOMAN. |

suggest that at least the critical changes should get merged into the NO&pas-
itory. Besides that, a large portion of code developed while working on thsgh
(see chapter 6) could also be considered suitable for inclusion in NOMAN.

D.1 ImageShow?2

This class suffers from a severe bug, which leads to memory corruptichs@g-
mentation faults). The constructor for the class sets the dimension of the image to
320x240 pixels and allocates the necessary amount of memory. If an intgge la
then 320x240 is drawn, a function for resizing the visible window is callatlitb
memory is not enlarged to accommodate larger images. Additionally, the initially
allocated memory is not freed on destruction of the class.

Besides the bugs, | added another function that seemed useful. | mabdied
class to make it possible to query for mouse clicks in a non-blocking manner by
always enabling ButtonPress events, and polling for them in the new batkr
function.

Those madifications can be found in the filesageShow2 nod. cc and
I mgeShow2_nod. hh, which probably should get merged into the NOMAN
tree.

D.2 CASMatrix

One of the most frequently used matrix operation during this work was the matrix
multiplication operator. The matrix multiplication function however suffers from
two different performance bottlenecks, one in the multiplication algorithm, and
another caused by temporary objects. Luckily, both bottlenecks carnrieetml.

76

D. Notes about NOMAN

D.2.1 Multiplication

The first problem lies in the implemented multiplication routine:

[lcurrent nultiplication |loop in CASMatri x
CASMatrix res(rl.qg_rows(), rhs.qg_cols());

res = 0.;
for(i =0 ; i <rl.g_rows() ; i++)
for(j =0 ; j <rhs.q_cols() ; j++)

for(int k =0; k <rl.g_cols() ; k++)
res.elenfi][j] += rl.elenfi][k] * rhs.elenfk][j];

When observing the code above, it is clear that the index variable k ekang
each iteration, and that forceds. el enf k] [j] to access memory in a non-
linear manner. Accessing memory non-linearly is never a good idea acgord
to [6] [19], [18] and my own measurements. If linear access of data wmeildsed
instead, special hardware prefetch circtitguld move data from the slow main
memory into fast cache memory even before the microprocessor could tkiadw

it might need the data.
The performance of the multiplication routine was improved greatly by chang-
ing the indexes such that linear access of all the three matrices is achieved.

/1 suggested multiplication loop in CASMatri x

res = 0.;
for(i =0 ; i <rl.g_rows() ; i++)
for(int k =0; k <ril.g.cols() ; k++)
for(j =0 ; j <rhs.qg_cols() ; j++)

res.elenfi][j] +=rl.elenfi][Kk] * rhs.elenfKk][]];

Additionally, it is possible to improve performance slightly more for larger matri-
ces by avoiding using two-dimensional arrays in the innermost loop (see
Shat ri x_i npl erent at i on. hh). It might not be preferably to try and op-
timise CASMatrix too much, as the results could prove to be architecture depen-
dent. It should be noted that the majority of the time used when multiplying small
matrices lies in the creation of temporary objects, and that that issue alsll shou
be addressed to achieve the best performance possible. For oefeseme com-
parisons between the uncompleted SMatrix class and the CASMatrix clabg can
found in section 6.7.1.

D.2.2 Temporary Objects

When using CASMatrix objects to calculate expressions suéh as b+ c; , that
code would generate a temporary object containing the result of the multiplicatio
before the results are copied iMdoThe longer the expression, the more temporary
variables would be generated. The temporary variables add a signifieanttead

to calculations when the matrices are small. Multiplying two 3x3 matrices for
instance uses less then one third of the time for the multiplication — the majority of

Early P4 microprocessors had four prefetch units, allowing an abswlatémum of four differ-
ent arrays to be prefetched simultaneously when they are all acdesesadiy.

77

D. Notes about NOMAN

the time is eaten up by creating, copying and destroying the temporary vaticble
simpler operation than matrix multiplication is considered, the proportion between
time eaten up by the temporary variable and useful processing time would e muc
larger.

The effect of bypassing the use of a temporary variable can rougtdgédue by
comparing the two rightmost columns in table 6.1 on page 38. Even though that
data is not for CASMatrix, the effects should be similar.

There exists a way to get rid of temporary variables. The use of common arith
metic expressions could be replaced by calling corresponding tempaoegryuhc-
tions. As an examplajest =a*b; could be evaluated by calling the temporary-
free mul _and_assi gn(CASMat ri x& dest, const CASMatri x& a,
const CASMatri x& b);. Even if only the most common expressions (such
asA=bxc; A=b+c; A=b-c;)would be implemented directly, it would lead to
a large performance increase when small matrices are used.

The addition of a large number of strangely hamed functions would however
make it difficult for users to use the class efficiently. Luckily, there is a arayind
that through the use of template meta programming. If lazy evallfatene used
as described in [16], the compiler would translate arithmetic expressiorctigire
into calls to the appropriate temporary-free functions. Remaining unhaadtte
metic expressions would get their sub expressions evaluated as fasisl@avith-
out temporary variables. The compiler would not resort to using oveeldadith-
metic functions (which might use temporary objects) until the remaining expres-
sion cannot be handled by any specialized temporary-free function.

| would presently not recommend the implementation of a scheme for remov-
ing temporary objects because of the added complexity. | do howeverrsseda
for knowledge about this issue, as some (like myself) happily started using th
convenient CASMatrix class without too many thoughts on possible perfa®nan
penalties.

D.2.3 Using Optimised Libraries

I would like to draw a little attention to the fact that both AMD and Intel provides
highly optimised versions of BLAS which together with LAPACK would be
suitable for performing more of the functions of CASMatrix. There alsotsxis
efforts such as ATLAS which target more architectures as well.

Previously, | would have stated that it would not be a god idea to include de-
pendencies on many additional packages into NOMAN. But currently, Bo&t
and LAPACK is needed to perform singular value decompositions, angde tie
maintainers of CASMatrix are thinking about either removing those librargdep
dencies, or are thinking about using the optimised libraries to improve peafore
in other parts of the class as well.

Zalso known as closure objects

3Basic Linear Algebra Subprograms

“Linear Algebra PACKage

Automatically Tuned Linear Algebra Software

78

D. Notes about NOMAN

D.2.4 Optimisation Flag

Currently, no optimisation is enabled when compiling any of the functions in
NOVAN sr ¢/ Mat h into the library libMath. | would suggest thatO2 should

be enabled by default. Compiling CASMatrix with optimisations and using an
improved multiplication routine would result in approximately ten times the per-
formance for matrix multiplications.

The only reason against using optimisation might be that enabld®ycould
make debugging of classes using CASMatrix more difficult.

Another solution could be to define a few of the mostly used functions in the
h-file. Then those functions would be optimised in the same way as any other
application which depends on CASMatrix. It would pose a problem to seleich
functions to include in the h-file, and only slow commonly used functions (with
little code) would be best suited for inclusion (unless everything is moved isto th
h-file).

D.3 Resolving Compilation Issues with gcc 4.4.1 and FC6

This list might not be complete, but have some notes about compiling and using
NOMAN with newer compilers and libraries.

D.3.1 libMath.so

Building this library was not straightforward because of newly adde@dépncies
to the libblas-3, liblapack and libg2c libraries. More recent GCC compilers{mo
probably from 4.x.x and later) ship with libgfortran instead of libg2c, whicldema
it necessary to editNOVAN sr c/ Mat h/ Makef i | e” to reflect those changes.
It would be nice if the necessary tests could be performed by a confgripd.

D.3.2 SELinux

As SELinux has started to be common in many distributions, it is necessary to
know how to run NOMAN if SELinux is enabled. If the message “Error: ruan
restore segment prot after reloc: Permission denied” gets displayautwiieg to

run certain NOMAN applications, the “Memory Protection” policy for SELinux
would have to be changed to “Allow all unconfined executables to useitisrar
requiring text relocation that are not labeled textrel_shlib_t". It should aks
possible to change the security context for the libraries built by NOMAN by-is

ing “chcon -t textrel shlib t NOVAN | i b/ *. so”. Both ways should
make it possible to use NOMAN together with SELinux.

D.3.3 V4L2Grabber

This class relied on the obsolete define HAVE_VA4L2 to get the preprocéss
generate valid code. The code would not compile without HAVE_V4L2, so it
would be preferable to modify4L2Gr abber . cc to simply define HAVE_V4L2

for those kernels (2.6.18 or later) that needs it:

79

D. Notes about NOMAN

/1Since current kernels don not have HAVE VAL2 defined any nore,
/land VAL2 is included in the kernel source

//see "http://ww.kernel.org/pub/linux/kernel/v2.6/ChangelLog-2.6.18"
#i ncl ude <l inux/version. h>

#i f LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 6, 18)

#def i ne HAVE V4L2

#endi f

80

Appendix E

Line Tracking and Detection

During the initial phase of this work, one of the goals involved integratingiawis
part into a human machine collaborative system (HMCS). The environmtesrew
the HMCS was going to operate would include visual clues in the form of lines
hinting preferred todl paths. That would require detection as well as tracking of
line segments in the vicinity of the tool.

Due to unexpected hardware failure, the HMCS system was never imple-
mented, and line detection and tracking is no longer a goal of this work efarer
the developed line tracker as well as the implemented line detection algorithm are
described in this appendix rather then in the main text of the thesis.

E.1 Line Tracking

The developed line tracking algorithm was based on the edge trackingtligor
described in [9]. Their edge tracking algorithm is described in the firtta® and
latter sections describes how it was extended to allow tracking of lines.

E.1.1 Edge Tracking

One computationally effective and easy to conceptualise way to track edges
described in [9]. Their methodology was to use known information of thes edg
(last known position and angle) when estimating position and angle in thenturre
frame. Thereby, the current frame could be preprocessed to facilgsteination

of the position and angle of the edge. Further on, the current angle etitiewill

be denoted by,.

If the approximate state of the edge in the input image is known, those param-
eters could be used to rotate the part of the image containing the edge. Then a
almost vertical edge should be found.

Figure E.2 shows the edge in the inputimage (figure E.1) after rotatiép by
which was the last known angle of the edge. If the rotation since the pefranme
was small, that edge would be almost vertical.

The tool is attached to a robotic arm, has a mounted camera, and is mypvedasuring the
applied force from the user. The applied force would be processedcbynputer, which determines
how the robotic arm should be moved.

81

E. Line Tracking and Detection

Figure E.1: Unrotated edge in input image.

Figure E.2: Edge rotated by last known angle ; (preprocessed image).

The purpose of getting a rotated cut-out of the edge, as they did in [8]{ava
facilitate the estimation of the state of the edge. The first step is to estimate the
angle of the rotated line as well as its displacement along the normal direction of
the line. After that, a transformation is used to retrieve the angle and position of
the unrotated tracked edge in the input image.

The estimation of parameters for the rotated (almost vertical) edge was in [9]
carried out by first creating two slightly rotatetmages of the rotated cut-out of
the edge (as in figure E.3).

One important step is then carried out in all three images. The purposetof tha
step is to determine the position and response of the strongest verticahealfje
three images. To find vertical edges, one can differentiate the image inrikero
tal direction. The differentiated image would contain edge points as eitharlarg
positive or larger negative values (as in figure E.4(b)). To determin@dbk#ion
of one vertical edge, one could then sum all columns in the differentiatedeimag
and the column with the greatest absolute response is the position of theestrong
edge (figure E.4(c)). For increased accuracy, the average poaitmrired from
the three differently rotated images is used as the position of the edge.

2shear in just one direction can approximate this rotation

82

E. Line Tracking and Detection

(a) Almost vertical dy (b) Almost vertical (c) Almost vertical +dp

Figure E.3: The edge rotated by three different amounts.

(a) I; (inputimage) (b) I, (gradient in
direction)

response

(c) Sum of columns (response). Dot-
ted line shows averaged value, and
peak reveals displacement of line (in
normal direction of the edge)

Figure E.4: Intermediate results during edge tracking

Now that the position of the rotated edge is known, the angle of that edge has
be determined as well. This was solved in [9] by using the greatest resporthe
three differently rotated images. By fitting a quadratic curve to these thiaes/a
(as in figure E.5), they estimated which angkethat should give the maximum
response and hence correspond to a completely vertical edge. Knthweiaggle
of the edge and displacement in the normal direction of the edge, onelcatata

83

E. Line Tracking and Detection

response

—dp 0 df dy

Figure E.5: Interpolation of angle by fitting of a 2'nd degree polynomialde r
sponses at-dyp, 0, and-+dp.

the real angle and position of the edge:

Ty Ti_1 —dssin(fy—1 + d6)
Yt = Yi—1 + ds cos(0i—1 + df)
0y Or—1 dé

, Whereds = displacement of edge in the normal direction of the edge, &hd
= deviation in angle. Subscripts— 1 denotes that those variables are the ones
corresponding to the previous frame.

E.1.2 Investigated Improvements

Three improvements over the implementation in [9] has been investigated: modi-
fying the algorithm to track lines instead of only edges, determining endpoints of
lines, and improving angle estimation. Those improvements are discussed in the
following sections:

Ability to Track Lines

The algorithm described in [9] had to be modified to be able to track lines. The
problem was that summing of columns to determine displacement in the normal
direction of the line would not work reliable. Lines slightly slanted in the inter-
mediate images would sum gradients from both sides of the line as columns of the
image are summed. That results in a response close to zero for the middle of the
line (as figure E.6(a) illustrates).

That can be avoided in a few ways. The gradient image could be pexzed
in such a way that no cancelling occurs for columns containing both sidin of
line. Alternatively, the centre of the line could be considered to be in the middle
between the two peaks in the response with opposite values (figure E.Bfia)
is however not a good option since all information from the middle of the line will
get lost, and the tracking will be much more susceptible to noise. Increasss n
sensitivity would also occur if the centre of the line was considered to béloer e
peak in figure E.6(b) because of the cancellations which would be presen

To avoid increased noise vulnerability, only preprocessing of the gradie
age to eliminate cancellation is an option. When only one edge of the line is going

84

E. Line Tracking and Detection

O
<
- LA
+ — 3\
~
+ —
+ - (b) When both edges contribute to the re-
+ 0 0 0 0 — sponse, middle part of line gets cancelled
(a) Cancellation for middle of out (unprocessed x-gradient image).

slanted line (when summing
columns of unprocessed gradi-

ent image)

%

3 E

3 S

= gradient
(c) When only one edge contribute to re- (d) Out replaces the role of the gradient to
sponse, response increases dramatically promote gradients with the right sign and
(values with wrong sign in x-gradient im- magnitude. The peak corresponds to mean
age removed). gradient in the tracked edge of the line.

Figure E.6: Preprocessing of the x-gradient image could increase ¢éspanse
significantly for slanted lines.

to be tracked, preprocessing by removing all gradients with the wrongfsign

the intermediate image could be performed. Better yet would be to only prigpaga
gradients close to the mean gradient of the tracked edge of the line. Botigalter
tives would generate responses similar to the one in figure E.6(c). | tbasap
gradients according to figure E.6(d), such that gradients belonging tinaitieed
edge of the line is heavily promoted.

The drawback of this solution is that the gradient image has to be computed.
Previously, the operations of summing columns, and taking derivativdd beu
interchanged, resulting in a need for taking derivatives of only one rblaw,
derivatives have to be evaluated for all pixels in a box fitted around the line

Determining Line Extension

Determination of endpoints for line segments was not done in [9], but was-imple
mented here by looking at an image derivated in the normal direction of the line
(as in figure E.7). By summing all rows, it would be possible to determine the
extension of the line. Note that gradients again have to be preprocegsey¢nt
cancelling of the line when summing.

This procedure is more sensitive to noise then the procedure used tmoheter
displacement of the line in its normal direction. Therefore, some restrictians h
been placed on the endpoint determination, such as not allowing endpaimis¢o
more then a certain number of pixels in a tracking iteration. It should be no&¢d th
[9] avoided handling of the extension of lines completely, and | currentigests
that more work should be put into endpoint detection before relying on thieate
presented here.

85

E. Line Tracking and Detection

—]

response

Figure E.7: Determination of endpoints by summing of gradients in normal d
rection of line (along rows in warped image). Note that the gradient image w
preprocessed to reveal only one side of the line.

There are other ways to determine line extension as well. They should have
been investigated if the visual input to the line tracking algorithm was of such a
nature that endpoint determination could be problematic. One of the simpler can
didates would be to filter the neighbourhood of the expected endpoint withirce
kernels. Since the direction of the line is known, something similar to Canny Edge
Detection could be performed without having to use any additional rotatstbns
of the edge detection kernel. Another alternative might be to put smalletracda
ers on the line edges, tailored to respond to displacement, rotation and sgdling
They could be linked to the line tracker, and aid in determining the parameters fo
the line. It might actually be possible to use an area tracker to perform thre en
line tracking operation.

Better Estimation of Line Angle

A better estimator for line angle has not been implemented even though sonte effor
was made at finding one. in spite of that, some of the results was interesting:

response

-5 0 +5
angle (deg)

Figure E.8: Typical response versus angle for rotated edge

Intuitively, finding the angle by fitting of a quadratic function for three mea-

86

E. Line Tracking and Detection

surement points seemed like a bad solution. The supposed reason wagthat th
shape of the response (figure E.8) was too “spiky”. The thought vedsttivould

be difficult to estimate the maxima of that function knowing only three equally
spaced points.

However, results from simulations using a uniformly distributed angle of the
edge from -2 to 2 degrees revealed that the medium estimation error was only
0.7 degrees (even though the worst case estimation error was 1.1&s)edgrbat
corresponds to an error of 1.2 (or 2) pixels for a 100 pixel long edgd,that was
considered as good enough since iteratively tracking the line would leagkto e
better estimates.

Alternative ways to calculate the angle could be employed, such as splitting
the line into several line segments. That would perform better, as edgyesane
much easier to determine then edge angles.

E.2 Line Detection — Hough Transform

Tracking lines with the procedure outlined above would require the posifion o
the line to be known in advance. One algorithm designed to locate lines is the
Hough transform[8]. It is a transform which determines the location of lgge s
ments in a binary image by first transforming edge positiang) into all possible
parametrisations for all lines that could pass through that point. In my case th
(p,0) parametrisation is used, with € [0, 7], andp € [0,d] (whered = di-
agonal of image). The relation between they)- and(p, §)-parametrisation is

p = —xsinf + ycosb.

The main data structure used by the transform is an accumulator, holding the
number of occurrences of possible combinations betwesmmdd. The size of this
accumulator determines the resolution of the transform. If one would like tatdete
lines within a pixel of their true position in an image, one would have to be able
to separate roughly, ~ d differentp values, andVy ~ 7 /atan(1/d) differentd
values (wherel = /(image width? + (image heigh®)

The transform stores all possiblg, #)-parameters for all on-pixels in one ac-
cumulator, to make it possible to locate which parametrisations that acquired the
largest amount of votes. Table E.1 below summarizes the number of additions to
the accumulator for some image sizes and presumed ratios of pixels belonging to
lines.

E.2.1 Using 8x8 Patches

Applying the Hough transform on a large image has some limitations. To begin
with, it would perform poorly at finding shorter line segments. Those segsne
could easily get masked by noise and other features in the image. At the same
time, the Hough transform by itself will not reveal the extension of the lirggjire

ing scanning along each parametrised line to find the segments constituting lines.
Another limitation is the computational requirements, which even today makes it
less useful for real time processing of video segments.

87

E. Line Tracking and Detection

Table E.1: Number of accumulator inserts for differently sized images iffledetht
amounts of edges.

Image | Accumulator Accumulator inserts
Size N, Ny | 100% edges 10% edges one edge-pixe
8x8 | 12 36 2304 231 36
10x10| 15 45 4 500 450 45
50x50| 71 222 555 000 55 500 222
80x80 | 114 355| 2272000 227 200 355
320x240| 400 1257, 96537600 9653760 1257
640x480| 800 2513| 771993600 77 199 360 2513

Table E.1 shows the rapid increase of computational burden as the alg@rithm
used to locate line segments in larger and larger images. Clearly, the algorithm is
not suited for processing of large images directly, and another agpiwecto be
taken.

My suggestion is to apply the Hough transform on several smaller ovénlgpp
regions, and then merge the detected line segments. That would reduosotine a
of necessary computations dramatically. An algorithm for joining the smaller line
segments from neighbouring 8x8 patches would however have to beedesisd
that has not been implemented in this work. The principle does howeved soun
simple: join line segments in neighbouring 8x8 patches as long as no endfoints o
lines to be joined deviates longer then some given constant from the new line.

Consider, for example, a subdivision of an area of 80x80 pixels into(£81
10 x 10 + 9 % 9) smaller 8x8 regions, thereby reducing the worst case number of
inserts to181 * 2 304 = 417 024 (a reduction by the factor 5). In the same way,
the worst case number of inserts could be reduced by a factor of 18 region
of 320x240 pixels. Limiting inserts into the accumulator by requiring a similar
direction of the parameterisation compared to the direction of the local gtadien
in the image would also reduce the inserts by an additional factor of at mast f
The gain of using gradient directions would not lie directly in the reducedbar
of inserts, but rather in the reduced complexity of finding the most valid peak
the accumulator, and hence finding the corresponding line. In total, thearwhb
inserts can be reduced by a factor of at least 72 in the 320x240 caswidipg
a substantial increase of performance. The factor of avoided inserdéferently
sized images is tabulated in table E.2

88

E. Line Tracking and Detection

Table E.2: Factor of avoided inserts for differently sized images.
Image Size by using

by using 8x8 regions

8x8 regions and edge gradient direction
8x8 1.0 4
32x32 25 10
64x64 4.5 18
80x80 5.4 22
320x240 18.0 72
640x480 35.4 142

89

TRITA-CSC-E 2007:096
ISRN-KTH/CSC/E--07/096--SE
ISSN-1653-5715

www.kth.se

