

Planar Surface Tracking
and its Applications

 S I M O N G U S T A F S S O N

 Master of Science Thesis
 Stockholm, Sweden 2007

Planar Surface Tracking
and its Applications

 S I M O N G U S T A F S S O N

 Master’s Thesis in Computer Science (20 credits)
 at the School of Electrical Engineering
 Royal Institute of Technology year 2007
 Supervisor at CSC was Danica Kragic
 Examiner was Jan-Olof Eklundh

 TRITA-CSC-E 2007:096
 ISRN-KTH/CSC/E--07/096--SE
 ISSN-1653-5715

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.csc.kth.se

Abstract

In the field of computer vision, a large number of area trackers have beendevel-
oped. Their general purpose is to track planar surfaces. Their success depends on
the amount of suitable features present in the surface, but they can alsobe limited
by variations in illumination as well as by distortions of the surface in other ways
then the tracker was designed to follow.

This work compares a selection of implemented area trackers against each
other. The first category of compared trackers is limited to tracking translations.
A second category with first order optical flow trackers were also implemented,
and their capabilities of tracking more complex planar transformations was inves-
tigated.

This thesis shows how to derive and implement a number of simpler trackers,
as well as show certain applications where a number of trackers have to cooperate
to achieve common goals. One of those applications shows how certain objects
(in this case boxes) can be tracked by grouping a number of trackers together.
Other applications include a tracker that can track severe perspective distortion
of planar surfaces using trackers capable of only following affine transformations.
Yet another application tracked stars in over 100 pictures of the night sky, greatly
reducing the noise by cancelling the motion of the stars before summing all images
together.

Följning av plana ytor samt relaterade applikationer

Sammanfattning

I exjobbet används flera datorseendemetoder för följning av ytor på objekt. Mäng-
den särdrag på den följda ytan bestämmer hur bra de presterar, men ytföljarna kan
också begränsas av andra faktorer som belysningsvariationer samt förvrängningar
av annan art än följaren var avsedd för.

Detta arbete jämför ett urval implementerade ytföljare mot varandra. Dels jäm-
förs följare som enbart kan hantera translationer, och dels så jämförs följare som är
baserade på första ordningens optiskt flöde. De senares förmåga atthantera kom-
plexa modeller för den följda ytan testas också i praktiken.

Detta examensarbete visar utförligt hur man härleder och implementerar ett an-
tal enkla följare baserade på optiskt flöde, samt presenterar ett antal applikationer
där följare måste samarbeta för att nå gemensamma mål. En av applikationerna
visar hur en box skulle kunna följas genom att använda sex följare. En annan ap-
plikation demonstrerar hur perspektivföljning kan göras med en grupp följare som
ensamma enbart klarar affin följning. En ytterligare applikation demonstrerar hur
bilder av natthimlen kan göras mindre brusiga, om stjärnornas rörelse i en mängd
sekventiella bilder detekteras och kompenseras innan bilderna slås ihop.

Preface

The goal of this project has been revised since it was started. The original goal
was to develop trackers and feature detectors for simple features such as lines and
patches mainly in a two-dimensional setting, and then participate in the develop-
ment of a Human Machine Collaborative System (HMCS).

The intended HMCS would have been a system where a user’s ability to per-
form certain tasks could be improved by letting a robot and a user share thesame
physical tool. The tool would be equipped with sensors measuring the force ap-
plied by the user. The measured forces together with visual input from a camera
fixated on the tool could then be filtered, possibly enhancing force and precision
while reducing the amount of tremor of the human operator. The visual inputwould
mainly be used to determine if the user tried to follow certain types of features, and
the system could then apply virtual fixtures to enhance the user’s performance at
certain tasks.

Other people were going to contribute with software for a human-machine con-
trol framework. It would include capabilities of using the force sensors attached to
the tool, as well as doing the actual path planning for the robot using only position
and pose of the tool as input. Evaluation of different virtual fixtures (orother con-
trol laws) as well as automated classification of the user’s desired actions was also
determined to be outside the scope of my work.

My part of the project was only focused on computer vision, and on integrat-
ing that with the HMCS system, as well as evaluating the performance increase
expected when visual feedback was available to the HMCS system.

Unfortunately, the robot available for this project had broken down before it
was time to start working with the HMCS system, so that part of the work could
never begin. After some time without the ability to work on the HMCS system,
I started attaining regular courses. That meant almost completely postponingthe
thesis for half a year. After that, I worked on the parts that I consideredas most
interesting, including different area trackers as well as some useful code for vision-
related applications.

When meeting my supervisor in November 2006, she recognised that a lot of
work had been put in the area tracking department, and we selected a new final
goal for the thesis. The goal involved making a simple prototype system capable
of tracking boxes. The only requirements on the boxes was that their dimensions
should be known, and that its sides should contain enough features to allowoptical
flow trackers to track any of the sides of the box.

This work will be made available at: http://www.simong.se/papers.

Contents

1 Introduction 1
1.1 A General Tracking System . 1
1.2 Project Goals . 2
1.3 Outline . 2

2 Area Tracking 4
2.1 SSD Tracking . 4
2.2 Short-circuited SSD Tracking . 4
2.3 Optical Flow Tracking . 5
2.4 Issues . 6

2.4.1 Selection of Good Features to Track 7
2.4.2 Preprocessing . 9

3 Post Processing 11
3.1 Prediction . 11

3.1.1 Linear Prediction . 11
3.2 Clustering . 12

3.2.1 Clustering and Isometry Transformations 12
3.2.2 Clustering and Similarity Transformations 12
3.2.3 Clustering and Affine Transformations 13
3.2.4 Clustering and Perspective Transformations 14

4 Plane Tracking in Three Dimensions 15
4.1 Coordinate Systems . 15
4.2 Retrieving Pose of Plane . 15

4.2.1 Solving Pose by Knowing Tracker’s Homography 17
4.2.2 Solving Pose by Knowing Corner Points 17

4.3 Post-processing the Solution . 18
4.3.1 Building a Valid Solution 18
4.3.2 Minimizing Errors . 19

4.4 An Alternative Way to Track the Pose of a Plane 19

5 Tracking of a 3D-box 21
5.1 Box Model . 21
5.2 Individual Trackers . 22
5.3 Tracker Handover . 22

5.4 Discussion . 23

6 Implementation 24
6.1 Image and Video . 24

6.1.1 Text . 24
6.1.2 Line . 25
6.1.3 SImage . 25
6.1.4 VideoSource . 25
6.1.5 VideoSink . 26
6.1.6 GrabberThread . 26
6.1.7 MyScheduler . 27

6.2 Feature Detectors . 27
6.2.1 HoughTransform . 27

6.3 Tracking and Clustering . 27
6.3.1 LineTracker . 27
6.3.2 SSDSlowTracker . 28
6.3.3 SSDShortCircuitTracker 28
6.3.4 FlowTrackerCore . 28
6.3.5 FlowTracker . 29
6.3.6 PerspectiveTracker . 29

6.4 Timing . 29
6.4.1 RTC . 29
6.4.2 Stopwatch . 30
6.4.3 MeasureCycles . 31

6.5 NCurses . 32
6.5.1 OutputWrapper . 32
6.5.2 OutputStreambuf . 33
6.5.3 NCursesUser . 33
6.5.4 NCursesClass . 34

6.6 Additional Supporting Classes 34
6.6.1 ArgumentParser . 34
6.6.2 MFileReader . 35
6.6.3 MFileWriter . 36
6.6.4 MY_CTRLC_TRAPPER 37

6.7 Deprecated Classes . 37
6.7.1 SMatrix . 37
6.7.2 SSDFlowTracker . 38
6.7.3 SSDFlowTrackerRect 38
6.7.4 ClusterPoints . 39

7 Experimental Evaluation 40
7.1 Evaluation of Area Trackers . 40

7.1.1 Time Consumption . 40
7.1.2 Deviation from Expected Position 42
7.1.3 Step Response . 42
7.1.4 Extension of Range for Optical Flow Trackers 43
7.1.5 Behaviour at Different Tracking Speeds 44

7.2 Applications . 46
7.2.1 Star Photography . 46
7.2.2 Iterative Tracking . 47
7.2.3 Tracking of Three Dimensional Boxes 48

8 Conclusions 50
8.1 Regarding Area Trackers . 50
8.2 Regarding Clustered Perspective Trackers 50
8.3 Regarding Star Photography . 51
8.4 Regarding Tracking of Three Dimensional Boxes 51
8.5 Regarding Line Tracking and Detection 51

Bibliography 53

A Affine Approximations of Projective Transformations 55

B Decomposition of a Projective Transformation 57

C Optical Flow Estimation 59
C.1 Tracking Translations . 60
C.2 Tracking Affine Transformations 62
C.3 Tracking Affine Transformations (two step approach) 65
C.4 Tracking Perspective Transformations 68
C.5 Intuitive Description . 71

D Notes about NOMAN 76
D.1 ImageShow2 . 76
D.2 CASMatrix . 76

D.2.1 Multiplication . 77
D.2.2 Temporary Objects . 77
D.2.3 Using Optimised Libraries 78
D.2.4 Optimisation Flag . 79

D.3 Resolving Compilation Issues with gcc 4.4.1 and FC6 79
D.3.1 libMath.so . 79
D.3.2 SELinux . 79
D.3.3 V4L2Grabber . 79

E Line Tracking and Detection 81
E.1 Line Tracking . 81

E.1.1 Edge Tracking . 81
E.1.2 Investigated Improvements 84

E.2 Line Detection – Hough Transform 87
E.2.1 Using 8x8 Patches . 87

Chapter 1

Introduction

Feature detection and tracking are two interesting fields in computer vision. They
are both used in a wide range of applications. One group of such applications rely
on trackers to determine an optical flow field. That flow field can then be used
for motion detection, video compression, video stabilization, and in some cases
even for three-dimensional reconstruction of objects. Other groups ofapplications
include human machine collaboration, vehicle tracking (both in traffic surveillance
and for platooning), as well as general tracking of planes.

1.1 A General Tracking System

A general tracking system uses saved sequences or input from realtime video as the
source of frames to process. The system could either perform one tracking iteration
for each tracker in each frame, or use more sophisticated ways to schedule when
to run its different trackers. Which features to track could either get determined
automatically (by feature detection), or manually by selection of features to track.

Initialise

Detect

Estimate Update

Figure 1.1: A general tracking system.

The tracking system would undergo the states depicted in figure 1.1. It is first
initialised either manually by specifying features to track, or automatically by de-
tecting features in the first frame. Then all trackers in the system are queried to
estimate the new parameters of their tracked features. That estimation usually re-
lies on assumptions about the tracked object, most commonly that the object would

1

1. Introduction

retain its shape and appearance. This description do not apply for systems where
features are not tracked, but rather detected in the entire frame for each frame, and
then correlated to features detected in the previous frame. The third step in the
image is to update the parameters of each tracker using the estimated values. Since
both previous as well as current estimations of all tracked features are known, they
can all be allowed to interact. As an optional step, new features could also be de-
tected regularly, but depending on the application, detection of new features might
be skipped.

1.2 Project Goals

Most of the effort in this work has been put into examining and experimentingwith
area trackers, even though line tracking and detection has been addressed briefly
as well. Two main groups of area trackers have been investigated: correlation
based trackers, and optical flow trackers. The correlation based ones were limited
to tracking translations, while separate optical flow trackers were constructed for
tracking of several different motion models.

This thesis also presents certain applications where a number of trackers had
to cooperate to achieve common goals. One of those applications shows how cer-
tain objects (in this case boxes) can be tracked by grouping a number of trackers
together. Other applications include a tracker that can track severe perspective
distortion of planar surfaces using trackers capable of only following affine trans-
formations. Yet another application tracked stars in over 100 pictures of the night
sky, greatly reducing the noise by cancelling the motion of the stars and summing
all images together.

During the course of this work, several support classes has been developed as
well. They include classes for simulating a real time video source using saved
sequences, classes simplifying the use of NCURSES, a command line argument
parser, and several other reusable components.

1.3 Outline

Chapter 2 describes how correlation based SSD trackers work, and contains a brief
overview of optical flow tracking. That chapter also discusses the process of deter-
mining good features to track, and finishes with two methods to combat illumina-
tion changes, which can have negative impact on optical flow trackers. Chapter 3
discusses prediction, as well as clustering of trackers, and demonstrates tracking of
perspective transformations using a group of affine trackers.

Chapter 4 describes how knowledge about the camera and the tracked object
can be used to retrieve the pose of a tracked plane, and it also introducesa possibly
novel method to restrict the trackers movement to perspective transformations, at
the same time as the trackers state contains the pose of the tracked plane. Chapter 5
explains how the pose of a box can be tracked by knowing the dimensions ofthe
box and the internal camera parameters.

Chapter 6 briefly describes some of the developed C++ classes, which might be
useful in other projects, and Chapter 7 begins with evaluation of trackers, and ends

2

1. Introduction

with evaluation of certain applications. The applications include “Star photogra-
phy”, “Iterative tracking” and “Tracking of three dimensional boxes”. Chapter 8
finally contain the conclusions of this thesis.

Appendix A contain relationships between affine and perspective transformations,
and appendix B shows how to decompose a projective transformation. That is
followed by appendix C, which shows how to mathematically derive several optical
flow trackers, and also contains a separate more intuitive description of optical flow
trackers.

Appendix D suggests some changes and improvements to NOMAN, and ap-
pendix E contains some work on line tracking and detection.

3

Chapter 2

Area Tracking

Area tracking is the process of tracking a specified area of an image in subsequent
frames. Theconstant brightness assumptionis the most important assumption for
many types of area trackers. It states that the brightness of any point ofa tracked
patch will remain constant during tracking, and that only the positions of the points
can change. A measure of deviation from the constant brightness assumption for
two aligned images is the sum of squared differences (SSD). The SSD is equal to
0 for identical images, and gets higher the more different the images becomes.

SSD =
∑

all x,y in patch

(I1(x, y) − I2(x, y))2 (2.1)

WhereI1 andI2 denotes two separate images. This SSD equation can be used
directly for tracking as in section 2.1 and 2.2. The SSD Equation can also be used
to develop more complicated tracking algorithms, such as the one described in
section 2.3.

2.1 SSD Tracking

To perform basic SSD Tracking, one has to determine some possible locations
of the tracked area in the image. Then the SSD is calculated for each of those
possible locations. The simplest scheme for choosing candidate locations is touse
all locations within a specified radius of the trackers last position. The location
with the best correlation (lowest SSD) is then assumed to be the location of the
tracked area.

The most striking disadvantage with this method is that it is computationally
expensive. It also lacks the ability of tracking objects which are rotated orscaled
without much more extra effort.

2.2 Short-circuited SSD Tracking

One way of improving the performance of SSD tracking is to reduce the amount
of unnecessary computations. One useful method for that is called loop short-
circuiting[3]. It involves aborting computation of SSD:s when they get larger than

4

2. Area Tracking

some previously calculated SSD. Since the lowest SSD corresponds to the best es-
timation of the position, continued evaluation of SSD:s whose sum already exceeds
the previously lowest SSD is just a waste of time.

When calculating these SSD:s, it has been shown that the order in which the
SSD:s are evaluated in gets important, as well as the order of the pixels involved in
each sum.

2.3 Optical Flow Tracking

Optical flow trackers[10][9] provide a much faster way to track patchesthan the
other trackers described in this paper. An optical flow tracker would nothave to
calculate all possible SSD values for all possible displacements. Instead, itwould
solve an equation system to directly estimate the movement of the tracked patch.
The equation system could very easily be derived to allow tracking of most motion
models, from translations up to arbitrary homographies1. Optical flow trackers for
several common motion models are derived in appendix C.

To achieve the high performance associated with optical flow trackers, there
are a number of simplifications in their equation systems. The benefit of that is
that most values can be precomputed before the tracker is used, making tracking
a very fast operation. The drawback is that the simplifications make the tracker
more sensitive to illumination variations, as well as decrease the trackable range to
the subpixel range. Solutions to reduce the influence of illumination changesare
discussed in section 2.4.2, and the solution that would increase the trackablerange
is simply to downscale2 images during tracking. When the tracked image is down-
scaled, the precision of the optical flow tracker is reduced. To maintain the original
resolution, tracking could be committed by first tracking using strong downscaling,
and then repeatedly track with a successively reduced amount of downscaling. It
should be noted that the accuracy of optical flow trackers is much higher then the
accuracy achieved by the trackers in sections 2.1 - 2.2, and when only translations
are tracked, a downscaling by the factor of two or four gives comparable results.

For optical flow trackers, the two most important coordinate systems are the
coordinate system used by the camera, and the coordinate system of the reference
patch used by the tracker. As one tracker might use several reference patches with
different amount of downscaling, there are even more coordinate systems in play.

An overview of the tracking process focused at the actions in differentcoor-
dinate systems is depicted in figure 2.1. The homographies specified for each co-
ordinate system shows the relationship to the rectified reference image usedwhen
initialising the tracker. To the left in the image is the camera coordinate system,
and the homographyH (which directly relates the pixels camera coordinates and
rectified coordinates) completely describes the current state of the tracker in com-
bination with the width and height of the rectified but not scaled image. The image
from the camera is rectified and downscaled by the transformationH−1Q, where
Q depends on the amount of downscaling. If the deviations between the reference

1Use of homographies and homogeneous coordinates allow all coordinate transformations used
within this thesis to be described as matrix multiplications. Refer to [7] for details.

2Downscaling by the factorx would imply that only everyx pixel is used in any direction.

5

2. Area Tracking

and the current rectified and downscaled image is in the sub pixel range, solving the
optical flow equation system yields the error estimateQ∆M , which simply cor-
rects the homography in the rectified and downscaled coordinate system. Ifother
parameters than a homography is used for the motion model, its corresponding
homography must be constructed from the estimated error. Finally, the corrected
homography has to be transformed into camera coordinates to get the new state of
the tracked patch.

Camera
coordinates

Rectified but
not scaled

Rectified and
downscaled

homo.= H

H−1∗
homo.= I

Q∗
homo.= Q

estimate
error

Q∆M

correct
error

homo.
=

Q(I + ∆M)
HQ−1∗

new homo.
=

H(I + ∆M)

Figure 2.1: Tracking process overview showing all coordinate system transforma-
tions used by an optical flow tracker.

2.4 Issues

A small note is made here about prediction and downscaling, and the following
subsections discuss selection of good features to track (2.4.1), as well as prepro-
cessing of images to remove flickering (2.4.2).

When tracking fast movements, or tracking is computationally expensive, pre-
diction and downscaling can be useful. Firstly, prediction can acquire better esti-
mates of the current tracker state as described in section 3.1. This makes it possible
to use a smaller candidate area in algorithms trying out possible matching positions
one by one.

Secondly, downscaling is essential together with optical flow, as optical flow
tracking only works reliably for movements in the sub-pixel range. Scaling the
image down by for instance the factor 2 would mean that only every second pixel
is used by the tracker in both x and y directions. That means that the motion of the
tracked patch as seen by the tracker would he halved. Downscaling also reduces the
amount of computations. Scaling the image down by the factor 2 would only pass
every fourth pixel of the original image to the tracking algorithm, thereby saving
75% of the computation time in algorithms which scale linearly with the number
of used pixels.

6

2. Area Tracking

2.4.1 Selection of Good Features to Track

Selection of good features to track is important but not easy. The most common
ideas seem to focus at determining when translational motion can be tracked with-
out stumbling against the aperture3 problem. Two papers addressing this issue with
the basis of eigenvalues are [15] and [12]. They both analyse the

ATA =
∑

[

I2
x Ixy

Iyx I2
y

]

matrix that is used in optical flow tracking. The description in [15] talks about
eigenvalues of theATA matrix in the context of solving linear equation systems.
They basically say that the eigenvalues must be larger then some minimum value
(dependent on image noise), and that the matrixATA should be well conditioned to
make the equation system used while tracking solvable. Eigenvalues differing by
several orders of magnitude would break the conditioning requirement, but was not
handled anyway in [15]. They considered the largest eigenvalue as bounded since
the bounded pixel values in the patch could not generate arbitrary large eigenvalues.

The description in [12] talks about the sameATA matrix, but they obtained
that matrix by disregarding all temporal differences that could be considered when
moving from equation (C.2) to equation (C.7) (both in appendix C). Their result
was

ERR =
∑

all x̄

(

[

∆x ∆y
]

ATA

[

∆x
∆y

])

w

which gives approximate deviation from the constant brightness assumptionfor
displacements∆x and∆y. The description in [12] talks about the eigenvalues
of ATA in the context of analysing another simple corner detector. They had two
points especially worth noting. Firstly, a contrast increase byp would increase
the eigenvalues byp2, which have to be taken into consideration depending on
preprocessing (section 2.4.2). Secondly, it was possible to use thresholds without
explicitly calculating the eigenvalues. To be able to do that, the trace and the
determinant ofATA should be considered:

Tr(ATA) = λ1 + λ2 =
∑

I2
x +

∑

I2
y

Det(ATA) = λ1λ2 =
∑

I2
xI2

y −
∑

I2
xy

and then thresholding of trackable corner regions would be performed on the re-
sponse

R = Det − k Tr2 (2.2)

where negative values of R corresponds to edge regions, and positive values to
corner regions that are easy to track. Flat regions are detected by thresholdingTr,
the sum of both eigenvalues.

A comparison between the threshold strategies in the two papers can be seenin
figure 2.2. The only practical difference is that [15] disregards the conditioning of
the matrix based on their practical experience, while [12] keeps that requirement.

3The aperture problem occurs when the tracked patch contains too little information to allow
tracking in bothx andy direction. The patch could be uniform, or contain edges in one direction
only.

7

2. Area Tracking

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

 -3
 -2
 -1
 0
 1
 2
 3
 4

λ1

λ2

corner regionsed
ge

re
gi

on
s

edge regions
flat regions

(a) Thresholding of eigenvalues as performed
by [12]. Iso-contour lines of equation (2.2) for
k=0.15 are drawn.

0
0

λ1

λ2

λmin

λmin

corner regions

ed
ge

re
gi

on
s

edge regionsflat regions

(b) Thresholding of eigenvalues as performed
by [15].

Figure 2.2: Feature thresholding based on eigenvalues. The main difference is
that 2.2(b) disregards the conditioning of the matrix based on practical experience,
while 2.2(a) keeps that requirement.

The additional possibility of adding a cornerity constraint to prefer features
with many corners and curves is mentioned in [14], which would be highly benefi-
cial for trackers not restricted to translational movements.

Unfortunately, the process of determining the thresholds used for determin-
ing if an area could be tracked is not straightforward. First of all, any weighting
should be incorporated when calculating the eigenvalues used for thresholding, and
preprocessing affecting the contrast of the image would have to be left out or be
compensated for, as that changes the eigenvalues.

Another problem was that normalization of eigenvalues of different trackers
with different sizes was not straightforward, possibly making it necessary to re-
trieve customized thresholds for all tracker sizes that would be used. Formany
applications, the size of automatically detected regions is predetermined, and only
the initial problem of setting thresholds for fixed size trackers would have tobe
solved.

The attempted method of determining the thresholds for fixed size trackers was
to simulate translational motion of an image while tracking many regions within
it. The length of displacement was increased for each frame, and the direction of
displacement was also changed wisely. Unidirectional displacement could falsely
benefit regions containing edges, and erratic changes in displacement direction
could give zero mean displacement between neighbouring frames, making itless
demanding for the tracker.

Under those conditions, it would be possible to harvest “survival times” defined
as the number of frames before a tracker deviated from its supposed position by
more then some small constant. The “survival times” would correspond directly to
the suitability of tracking the tracker’s associated patch.

The result of such experiments resulted in eigenvalues and “survival times”
for a large number of trackers. When those data were evaluated, the difficulty of

8

2. Area Tracking

selecting appropriate thresholds for eigenvalues became evident. The thresholds,
which would correctly identify almost all good trackers was also letting over 25%
of the worst trackers pass as good ones. When setting the thresholds such that all
the worst trackers were blocked, many of the best trackers were not detected at all
instead.

Discussion

The conclusion of my experiments is that it is possible to calculate eigenvalue
thresholds for classifying patches as trackable. The drawbacks are that such classi-
fication sometimes makes mistakes, and that the thresholds have to be determined
individually for each size of the tracked patches. For fixed size patches, the perfor-
mance can be considered adequate in most cases.

Whenever possible, I suggest that other means should be used as well tofind
trackable patches. One such example would be background subtraction of static
scenes with few moving objects, where traffic surveillance serves as an example.
Another approach would be to “try out” trackers for a specified number of frames
before acknowledging them as good trackers.

2.4.2 Preprocessing

Preprocessing of images before feeding them to different trackers can often be a
useful tool. For instance, using gradient images or laplacian of images instead
of the regular images can remove some of the influences from reflections, al-
though the impact of high frequency noise makes that less suitable for normal
image sequences[14].

Another possible task for preprocessing is to remove effects of flickering illu-
mination between frames. Two methods, which does that has been tested, andthe
results can bee seen in image 2.3. The first method was derived after observing a
few histograms of a sequence of flickering frames: it was apparent that flicker in
the illumination affected the image by multiplying all values in a frame by a factor
specific for that frame. That observation could be written as

ci ∗ Iframe i = Iframe 0

This unknown factorci can be determined by forcing all mean intensities to the
mean intensity of the first frame.

1

N

∑

ci ∗ Iframe i =
1

N

∑

Iframe 0

By multiplying all pixel values in an image by the easily determinableci, the image
intensities will be much closer to the intensities in the first frame.

The used camera was however not acting according to the model for the bright-
est 15% of the histogram. Therefore, histogram equalization4 was also tested. The
decision to prefer histogram equalization over fixation of average was taken after
considering the results in image 2.3(b). The behaviour of the current camera at the

4the histogram equalization used was using 16 bins, and linear interpolation

9

2. Area Tracking

highest intensities was just too inconsistent with the first model to allow it to be
used.

Flicker compensation could be applied either locally to the tracked patch, or
globally to the entire frame sent from the camera. Local flicker compensation
introduces an inability to track patches lacking higher frequency content. As an
example, consider the imageI(x, y) = αx + βy. Histogram equalization for any
patches from that image would result in identical patches regardless of thetransla-
tions in the image, thus making tracking impossible. Applying flicker compensa-
tion globally on the entire frame sent from the camera would be necessary to allow
patches lacking high frequency content to be tracked.

 400

 300

 200

 100

 0
 0 50 100 150 200 250

N
um

be
r

of
 p

ix
el

s

Grey level

(a) Histograms of unprocessed images

 400

 300

 200

 100

 0
 0 50 100 150 200 250

N
um

be
r

of
 p

ix
el

s

Grey level

(b) When forcing constant mean intensity

 300

 200

 100

 0
 0 50 100 150 200 250

N
um

be
r

of
 p

ix
el

s

Grey level

(c) When using histogram equalization

Figure 2.3: Test results of flicker compensation in a movie. The plots contain
75 histograms for 75 different frames, the camera was stationary, and thetarget
consisted of 10 bars of different intensities.

10

Chapter 3

Post Processing

This chapter provides some information about possible post processing that can
be applied to the results from tracking. First, the simple task of predicting future
positions of trackers is addressed. After that, some means to cluster trackers to be
able to combine their results are described.

Another form of post processing can be seen in chapter 4 (page 15),where
information from an optical flow tracker is used to retrieve the three-dimensional
pose of a plane.

3.1 Prediction

Some trackers have trouble tracking fast moving objects. If the fast movingobject’s
acceleration is below some maximum level, prediction can be used to facilitate
tracking. The prediction would use old states of the tracker to predict future states.
The limit imposed on accelerations would then give a limit on the prediction error,
making it possible to determine how “far away” the tracker has to be able to search
for the tracked object.

3.1.1 Linear Prediction

Linear prediction is one of the simplest forms of prediction. Linear predictionuses
the last and the current state of the tracker to estimate future states. The application
of linear prediction to coordinates is straightforward:

x̄t+τ = x̄t + τ(x̄t − x̄t−1)

When applying linear prediction to affine parameters describing more complex re-
lations, one out of two roads can be taken. The first solution is to use the same
principle as above: the affine parameter matrixA can be updated using a differ-
ential matrix. This will however only work while the changes in the matrixA are
small (which they are going to be during optical flow tracking).

At+τ = At + τ(At − At−1)

The second solution for updating affine parameters is to extract a suitable set of
parameters from the affine matrixA. These parameters could then be predicted

11

3. Post Processing

separately, and then recombined into the predicted matrixAt+τ . This would give
better responses when there are large changes inA between each tracking cycle.
The process of separating parameters for a projective transformation isdescribed
in appendix B, and that process can be simplified to handle less complex motion
models as well. As my implementation mostly relies on Optical Flow tracking of
slowly moving objects, I would not benefit from this second solution.

3.2 Clustering

It is possible to cluster trackers related by some measure by grouping the related
trackers. The process of clustering can add to the usefulness and reliability of the
tracking system. Trackers in each cluster would have to be processed together as a
group to improve the performance of the tracking system.

Obvious benefits of clustering would be that one could update the state of all
trackers in a group without having to run all individual trackers, as onlya few are
needed to determine the motion of the entire cluster. Another benefit would be that
much more information would be available for predictors.

To determine which measure to group trackers according to, one first hasto
determine an appropriate model of the trackers. When limiting the model to al-
low only translations and rotations, the measure used to group trackers could be
equidistance. Some reflections regarding the usefulness of clustering for a couple
of motion models are mentioned in the following sections.

3.2.1 Clustering and Isometry Transformations

Isometry transformations are transformations, which preserve euclideandistances,
and hence also angles and areas. Isometry transformations could thus include trans-
lations and rotations. For isometries, equidistance would be an ideal measurefor
clustering. Clustering could be implemented by calculating all distances between
all trackers after each frame. That would require1

2

(

N2 − N
)

distances to be cal-
culated, whereN is the total number of trackers. The trackers whose distances
between each other never change more then some threshold would then be clus-
tered in the same group.

Low-pass filtering of the distances between all trackers, and clustering of track-
ers whose distances never deviate more then a threshold from the low passfiltered
distances would allow slow deviations from the equidistance condition. Allowing
for very slow deviations could for instance allow clusters to be preservedeven when
the patches are travelling along paths distorted by perspective or barreldistortion.

3.2.2 Clustering and Similarity Transformations

Similarity transformations are transformations allowing for translation, rotation,
and isotropic scaling. During similarity transformations, only angles between lines,
ratios of lengths, and ratios of areas are preserved. The proper ways to cluster track-
ers undergoing similarity transformations would be to use one of those invariants.
For N trackers, there would be18

(

N4 − 2N3 − N2 + 2N
)

ratios of lengths to

12

3. Post Processing

calculate. For larger number of trackers, this would soon require too manycompu-
tations to be practical (see table 3.1).

Table 3.1: relationship between number of trackers, and related numberof unique
lengths and length ratios.

trackers unique lengths unique length ratios
3 3 3
4 6 15
5 10 45

10 45 990
15 105 5460
20 190 17955

In many tracking applications, the tracked objects would not move fast towards
or away from the camera. That means that the scaling that the tracked objects
are undergoing is very slow compared to translations and rotations of the tracked
object. This makes it possible to cheat in some situations, by using equidistance
for clustering instead of ratio of lengths. That implementation could low-pass filter
the distances between all trackers, and cluster the trackers whose distances never
deviate more then a threshold from the low pass filtered distances. This would
allow trackers to slowly break the equidistance condition, without splitting up the
cluster. Clusters experiencing no distortion, or slow distortions, could hence be
handled as an isometry transformation instead.

3.2.3 Clustering and Affine Transformations

Individual trackers trying to track patches undergoing affine transformations re-
quires more information in the tracked patches then simpler trackers. The patches
sometimes contain less information then necessary to correctly follow the affine
transformations. If one would cluster some trackers undergoing the same affine
transformation, one would see that all trackers and the cluster of trackers would
undergo identical transformations1.

This makes it possible to calculate the affine parameters for the cluster using
only centre positions of the trackers, and then pass those parameters back to the
trackers constituting the cluster. It would then be possible to follow affine transfor-
mations using a few trackers, which by themselves only would be able to follow
similarity2 transformations. If one would use trackers capable of following affine
transformations, their parameters and the group’s parameters could be fused. I be-
lieve that the fusion would result in more accurate tracking then possible without
cooperation between trackers.

1Different sub-regions of an affine transformation only differ in their displacement parameter.
2A similarity can be decomposed into scaling, rotation, and translation.

13

3. Post Processing

3.2.4 Clustering and Perspective Transformations

Clustering of affine trackers can be used to get information about perspective trans-
formations. The main idea is that an affine transformation can approximate the
effect of a perspective transformation in a small area. Hence, several small affine
trackers can approximate the effects of a perspective transformation over a larger
area. Approximation of a perspective transformation by an affine transformation is
mathematically described in appendix A.

A basic implementation would calculate the perspective transformation by
combining data from all individual affine trackers. Feedback from calculated per-
spective parameters could then get passed back to the affine trackers tokeep diverg-
ing trackers from drifting away. Figure 3.1 shows an area undergoing a perspective
transformation, which was tracked using a cluster of affine trackers.

Figure 3.1: Perspective transformation tracked by a cluster of affine trackers.

Preliminary Results

So far, the performance of a clustered perspective tracker utilising a mesh of affine
trackers seems to be very close to the performance of an optical flow perspective
tracker. The most positive thing about the clustered perspective tracker is that it
seems to converge slightly faster in each iteration than its optical flow counterpart.

On the negative side, the clustered tracker is currently a little bit less reliable
then a single optical flow perspective tracker. To enhance the reliability, efforts
should be made to ensure that none of the small trackers gets an impossible job
(such as tracking something completely uniform). Weighting of affine trackers in
the cluster based on the reliability of each tracker could also lead to a reliability
improvement for the clustered tracker. Additionally, the reliability increases when
an overlap is used between the affine trackers in the cluster, but on the expense
of computation time. As the clustered tracker without overlap only saves roughly
10% of computation time, I would suggest that clustered trackers would not be
used as a replacement of optical flow perspective trackers.

14

Chapter 4

Plane Tracking in Three
Dimensions

The task of tracking a planar rectangular surface undergoing perspective transfor-
mations has already been solved (see appendix C.4). The next step wouldbe to
use knowledge about the tracked patch to determine its translation and rotationin
three dimensional space. The approach described in [4] was used here because of
its simplicity. It should be noted that better ways to estimate the pose exist [17][5],
but they were not used. The only requirements for the method in [4] are that the in-
ternal camera parameters as well as the dimension of the tracked rectangular patch
should be known. The Camera Calibration Toolbox for MatlabR©[2] was used to
estimate the internal camera parameters, as implementation of a camera calibration
algorithm was considered outside the scope of this work. The following sections
will outline how to estimate the pose of a tracked patch.

4.1 Coordinate Systems

The tracked rectangular patch in three dimensional space is shown in figure 4.1(a).
To simplify calculations later on, we assume that the patch lies in the XY-plane
(with Z-coordinates= 0). The(Xi, Yi) coordinates in figure 4.1(a) are determined
by the physical dimensions of the tracked patch. The calculated pose will show the
displacement from this initial pose.

Figure 4.1(b) shows the tracked patch as seen by the camera. The corners
(xi, yi) of the patch in image coordinates should be easy to retrieve from any area
tracker.

4.2 Retrieving Pose of Plane

To retrieve the pose of the rectangular planar patch, one has to look at therelation-
ship between the real world coordinates and the image coordinates for the corners

15

4. Plane Tracking in Three Dimensions

Plane at Z=0

(X0, Y0, Z0) (X1, Y1, Z1)

(X2, Y2, Z2)(X3, Y3, Z3)

Y

X

Z

(a) Tracked patch in the three-
dimensional world

(x0, y0) (x1, y1)

(x2, y2)(x3, y3)

y

x

(b) Tracked patch in image coordi-
nates

Figure 4.1: Patch in real world, and as seen by the camera.

of the tracked patch:

s

xi

yi

1

 = KT

Xi

Yi

Zi

1

Where the camera matrixK contains the internal camera parameters:

K =

a b c
0 d e
0 0 1

And T is the unknown transformation of the patch in the real world, and both the
image coordinates and the three dimensional coordinates are homogeneous.Since
we have set the Z-coordinate of the tracked patch to zero, the equation above could
be rewritten:

s

xi

yi

1

 = KRrotTtrans

Xi

Yi

0
1

= K

| | |
r1 r2 t

| | |

Xi

Yi

1

 (4.1)

whereRrot =

| | | 0
r1 r2 r3 0
| | | 0
0 0 0 1

andTtrans =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

.

Equation (4.1) could be further simplified by first multiplying it by the inverse
camera matrixK−1, thereby yielding:

s

x
′

i

y
′

i

1

 =

r11 r12 tx
r21 r22 ty
r31 r32 tz

Xi

Yi

1

 (4.2)

16

4. Plane Tracking in Three Dimensions

where

s

x
′

i

y
′

i

1

 = K
−1

xi

yi

1

 (4.3)

Equation (4.2) is a homography mapping the planar patch (in three dimensional
space) into a patch in the (x

′

i, y
′

i) coordinate system. The most important part of that
mapping is, that the translation and parts of the rotation matrix can be determined
directly. The missing columnr3 of the rotation matrix is also known, as it is the
cross product of the first two columns.

Solving for pose (three-dimensional rotation and translation) requires theho-
mography matrix from equation (4.2), and it can be estimated in two separate ways.
Either by using the homography of a plane tracker, or by using corner points of the
rectangular planar patch in both image coordinates and three dimensional coordi-
nates.

4.2.1 Solving Pose by Knowing Tracker’s Homography

I would highly recommend calculating the pose of the rectangular planar patch
by using the homography of the tracker if available. Ensuring that compatible
coordinate systems are used in all parts of equation (4.2) would make the matrixin
that equation equivalent to the homography. That would mean that the homography
commonly available from the tracker almost directly would give the pose of the
tracked object when multiplied byK−1. Some steps shown in section 4.3 should
however be applied to remove incorrect scaling and further inconsistencies in the
parameters.

4.2.2 Solving Pose by Knowing Corner Points

The pose of the plane can also be estimated when the corner points of the rectan-
gular planar patch in image coordinates and in three dimensional coordinatesare
known. The first step is to calculate the intermediate coordinates (x

′

i, y
′

i) from the
image coordinates by using equation (4.3).

Then the homography can be calculated from the intermediate coordinates,
allowing the pose to be estimated directly. First observe that equation (4.2) shows
that each corner point gives an equation system like this:

{

r31Xix
′

i + r32Yix
′

i + tzx
′

i − r11Xi − r12Yi − tx = 0

r31Xiy
′

i + r32Yiy
′

i + tzy
′

i − r21Xi − r22Yi − ty = 0
(4.4)

Using all four corner points would generate eight equations with nine unknowns. It
should be noted that the two columns from the rotation matrix are interdependent,
making it possible to solve the equation system nevertheless.

The four corner points give four systems like (4.4) with a total of eight equa-

17

4. Plane Tracking in Three Dimensions

tions. They can be rewritten into the system (4.5):

−X1 −Y1 0 0 X1x
′

1 Y1x
′

1 −1 0 x
′

1

0 0 −X1 −Y1 X1y
′

1 Y1y
′

1 0 −1 y
′

1
...

...
−X4 −Y4 0 0 X4x

′

4 Y4x
′

4 −1 0 x
′

4

0 0 −X4 −Y4 X4y
′

4 Y4y
′

4 0 −1 y
′

4

r11

r12

r21

r22

r31

r32

tx
ty
tz

= 0

(4.5)
This homogeneous system can be solved by performing a singular value decom-
position, where the singular vector corresponding to the smallest eigenvalue corre-
sponds to the correct solution. The solution yields the homography, which happens
to be approximately equal (except scaling) to the pose parameters of the plane.
Some steps shown in section 4.3 should however be applied to remove incorrect
scaling and further inconsistencies in the parameters.

4.3 Post-processing the Solution

The solution yielding the camera’s position relative to the plane in the real world
have to be post processed to be of any value. As a start, the procedurefrom [4] was
selected for constructing a valid solution and retrieving the full rotation matrix.
As a second step, the calculated pose of the box was improved by minimizing the
squared errors of the estimated patch corners.

4.3.1 Building a Valid Solution

The first step of post processing is to retrieve a valid solution. The steps described
in [4] are followed. The unknown scaling of the homography is removed, and a
valid rotation matrix is constructed. To remove the unknown scaling, the solution
is scaled such that the two columns of the rotation vector yield unit length (approx-
imately).

length =
√

‖r1‖‖r2‖ (4.6)

r
′

1 = r1/length

r
′

2 = r2/length

t
′

= t/length

The second step before the solution could be considered valid is to ensurethat the
two calculated columns from the rotation matrix are perpendicular. This is doneby
first calculating

ctr = r
′

1 + r
′

2

perp = r
′

1 × r
′

2

18

4. Plane Tracking in Three Dimensions

dir = ctr × perp

r
′′

1 =
ctr

‖ctr‖ +
dir

‖dir‖

r
′′

2 =
ctr

‖ctr‖ − dir

‖dir‖

and then normalizingr
′′

1 andr
′′

2 again. Finally, the third column of the rotation
matrix is calculated as the cross product of the first two columns.

4.3.2 Minimizing Errors

Certain types of errors caused unwanted deviations in the solution yielded by the
procedure above. The deviations could be caused either by errors in the coordi-
nates in the 3D-world, by errors in the estimated screen coordinates of the corners
of the tracked patch, or by problems with the algorithm itself. The sum of squared
reprojection1 errors for the models 3D-points was selected for minimization. Min-
imizing that measure produced a sounder solution than the initial estimate. The
conjugate gradient method was chosen to do the minimization, because it con-
verged faster then the steepest descent method during practical use.

To be able to more effectively minimize the problem, six parameters for de-
termining the pose of the rectangular planar patch in the real world was isolated.
Those parameters consisted of the three Euler angles describing the rotation matrix,
and all three values of the translation vector.

4.4 An Alternative Way to Track the Pose of a Plane

Sections 4.2-4.3 described ways to recover pose information using a homography
between certain three dimensional coordinates for the patch and the image coordi-
nates for the patch. Those homographies describes the mapping of pixels between
any two planes, and have eight degrees of freedom.

When a pinhole camera model is used, the perspective mapping of a plane is
however limited to six degrees of freedom. In applications where the pose ofa
three-dimensional plane is tracked, the two additional degrees of freedom of ho-
mography trackers can turn out to be an actual disadvantage. The additional de-
grees of freedom in homographies make it possible for the tracked patch tobe
distorted in ways which makes it more difficult to determine the pose of the plane.

Some effort was made to find a simple optical flow tracker, which directly
would track the pose of the plane. When no result was achieved that way,a ho-
mography tracker was modified to attain two wanted properties: restricting the
freedom of the homography, such that the patch is consistent with a pinholecamera
model; and enable the tracker to be queried about the pose directly. The underlying
mathematics relies on equation (4.1), from which the homography can be isolated

1reprojected 3D-coordinates into image coordinates

19

4. Plane Tracking in Three Dimensions

as:

H = K

| | |
r1 r2 t

| | |

Considering the change of the pose as estimated by the tracker to consist ofa small
change of rotation and an entirely new translation part:

H
′

= K

| | |
r
′

1 r
′

2 t
′

| | |

 = K

1 −α3 α2

α3 1 −α1

−α2 α1 1

| |
r1 r2

| |

|
t
′

|

The value of those equations would become clear as it can be seen that the trans-
lational part of the pose is given directly, while the incremental change in rotation
can be determined by solving an over determined equation system:

0 r31 −r21

−r31 0 r11

r21 −r11 0
0 r32 −r22

−r32 0 r12

r22 −r12 0

α1

α2

α3

 =

r
′

11 − r11

r
′

21 − r21

r
′

31 − r31

r
′

12 − r12

r
′

22 − r22

r
′

32 − r32

The restriction of freedom for the homography tracker was conducted by determin-
ing the initial pose of the plane before tracking began, and then determine changes
of the pose by looking at the incremental change of the homography. The restric-
tion of the homography into a valid pinhole camera transformation is then carried
out by recomputing the homography using the pose of the tracked plane.

Unfortunately, the current implementation of this alternative tracker performed
much worse then plane trackers using homographies. If more work was put into
this tracker, I believe that that might change.

20

Chapter 5

Tracking of a 3D-box

This chapter of the thesis is devoted to tracking of three dimensional boxes.Track-
ing was conducted by keeping separate plane trackers for each of the six sides of
a box. Only one tracker at a time would be used for tracking, and a model ofthe
box would then be used to determine the pose1 of all other sides as well as the pose
of the box. The calculated pose would then be used to select the most appropriate
side to track in the next tracking iteration.

5.1 Box Model

The box is simply modelled as depicted in figure 5.1. The model has six sides,
each associated with a separate tracker. The physical dimension of eachtracked
patch is given by the dimensions of that side, but the number of pixels used by the
tracker is currently not determined before the tracker is created. The reason behind
that was to create a tracker with as little interpolation as possible from the camera
image used for initialising it.

d
w

h

(0, 0, 0)

X

Y

Z

Figure 5.1: Box model. The origo for the box model is in the centre of the box.

1To know the pose would mean that both position and orientation is known in the three dimen-
sional space.

21

5. Tracking of a 3D-box

One important role of the model is to enable transformation of the pose of one
of the sides of the box into the pose of the box. It is equally important to be ableto
retrieve the pose of an arbitrary side of the box from the pose of the box.Without
those transformations, it would not be possible to change the tracked side of the
box.

The model of the box could beside the measurements of the box also contain
the textures for the sides of the box, but knowledge of the texture is not yet used.
The currently implemented box tracker is initialised with the dimensions of the box
and the four corner points of the front surface, and it then gathers textures for the
other sides of the box as the box is rotated. It would be much easier to reliablytrack
the box if the textures of its sides would be known in advance. Without any help
from the textures, and without any help from structure-from-motion algorithms,
deviations from the box can be seen when the box tracker switches to trackother
sides than the first side.

5.2 Individual Trackers

All six individual trackers would use optical flow tracking capable of tracking per-
spective distortions. Each tracker delivers a homography relating the tracked patch
in image coordinates and real world coordinates. That homography is thenused to
estimate the pose of the tracked planar patch (see chapter 4).

One problem for the trackers was changing illumination, as the tracked side
of the box might have to be tracked during a 90 degree rotation. The first counter-
measure was to compensate for uniform changes in illumination (see section 2.4.2).
This proved to be insufficient during some circumstances, especially if reflections
occurred on the tracked side.

A successful ad hoc solution was to add background subtraction capabilities to
the plane trackers. Normally, background subtraction would involve continuously
updating the background image. When a plane is tracked, that would however
become completely unnecessary since the supposed intensity values of the plane
ideally would be known and constant at all times.

In the beginning of any tracking iteration, the intensity discrepancy as seenby
the tracker would be due to deviations between the new state of the tracker and
the last known state of the tracker. The threshold for a pixel could then beset
to the absolute value of the gradient magnitude, as that corresponds to the largest
expected intensity change for any single pixel displacement. To allow discrepan-
cies larger then one pixel, that threshold was basically multiplied by some small
factor. Another small factor was additionally added to allow for other types of in-
tensity variations. There was not much experimenting to find the best strategyof
thresholding, as the first tries went way better then anticipated.

5.3 Tracker Handover

The side of the box, which is facing the camera the most, is currently used as the
tracked side. If a tracker handover should occur, it would happen asthe last step

22

5. Tracking of a 3D-box

in a tracking iteration. That means that the previously tracked side just havebeen
tracked, and the image used for tracking is used for constructing a new tracker for
the next side (if that tracker was not previously initialised). When trackers hand
over to each other, the most important part is that they use the model of the boxto
correctly determine the corner positions of the new tracker.

Previously, the side with the largest area as seen from the camera was used, but
that suffered a few shortcomings in real life. The most evident drawback of using
the area to decide when to shift the tracked face occurred for boxes withunequal
sides. The area of the smaller side would not become larger then the area ofthe
tracked side before excessive perspective distortions made tracking unreliable.

5.4 Discussion

There are possibly some additional improvements that could be added to this box
tracker. First of all, thresholding with the purpose of removing reflectionsand
reduce the impact of severe illumination changes did work beautifully. The thresh-
olded image might be improved by erosions2 and dilutions3 designed to remove
isolated thresholded points, and removing isolated holes in regions that should be
thresholded.

Another feature that would be useful in most practical situations would be the
ability to initialise the trackers for all sides of the box in advance. Currently only
the first face of the box is initialised, and the other sides are captured and initialised
as the box rotates. The drawback of using the current tracker and boxmodel to
initialise new trackers is error propagation. It is currently not possible to rotate
the box 270 degrees without loosing track, but that might possibly be partially
remedied by choosing a better box with a higher contrast pattern.

2Erosion is an operation on binary images removing edge pixels and thereby shrinking all areas.
3Dilution is an operation on binary images adding edge pixels and thereby enlarging all areas.

23

Chapter 6

Implementation

This chapter briefly describes some of the most useful C++ classes developed dur-
ing this work. The source code is heavily documented such that doxygen1 can
generate useful documentation.

6.1 Image and Video

Classes developed for image and video manipulation are described in this section.
They include the classes Text and Line that store texts and lines, and they can
be used for drawing their content into images. The class SImage stores images
and contain many image manipulation functions. The header file for that class
also contain several template functions for manipulating images whose pixels are
stored sequentially in ordinary arrays of arbitrary types. The classes VideoSink and
VideoSource are used for writing and reading video sequences to and from files on
hard drives. The last two classes in this section, GrabberThread and MyScheduler,
are both useful when developing applications where image acquisition is performed
by a separate thread.

6.1.1 Text

The Text class is used for writing strings into images. It contains a font forthe first
128 characters (i.e. some Swedish/German characters are missing), but itis still
very useful. Typical usage involves writing names or numbers of trackers on top of
displayed images.

Example Text usage
int w=320; int h=200;
unsigned char* image = new unsigned char[w*h];

Text t("This should get drawn with value 255");
t.draw(w/10, h/2, image, w, h, 255);

1Doxygen is a widely used documentation generator, similar to javadoc but supporting much
more languages.

24

6. Implementation

6.1.2 Line

The Line class represents line segments by their two endpoints. The main usage of
the class is to draw lines (both solid and dotted). This class performs clipping of
lines outside the destination image before drawing, and is hence safe to use with
unreliable input. This class additionally contains a limited set of geometric meth-
ods. Those methods can determine geometric length, normalized direction vector,
angle of line, and distance to the line (when both endpoints extended infinitely).

6.1.3 SImage

SImage is a basic greyscale image class, with the capability of referencing small
windows of other images without copying any data. The same header file also
contains many useful image manipulation functions which operate on ordinary
unsigned char* images, as well as some template functions which can op-
erate on two-dimensional arrays of arbitrary types.

6.1.4 VideoSource

The VideoSource class is a wrapper interface, which provides a simple way of
using the frame grabber, files, fifos, and other video sources.

The constructorVideoSource(string pathname, int* w, int*
h, int framerate) can be used to choose input from the grabber card if the
pathname is an empty string. If the pathname is a directory, all files in that directory
are read as pgm-files in alphabetical order. If pathname specifies a multiple-frame
pgm-file, that file would get used as the video source. The YUV4MPEG2 format is
also detected and can be used. There is also support for reading data from both fifos
as well as files, for instance to pipe images from mplayer2 into some application
using VideoSource.

The width and height parameters are passed to the grabber card to selectthe
capture resolution. If the video is read from file(s), the width and height passed
to the constructor gets overwritten with the values from the file used for the first
frame.

The framerate parameter is used to select framerate for other sources then the
grabber card. The implementation of framerates relies on usage of the RTC of
the computer, and it must be configured to allow use of higher user interrupt fre-
quencies, for instance by appending “echo 1024 > /proc/sys/dev/rtc/
max-user-freq” to the start up scriptrc.sysinit.

Example VideoSource usage
/** Program that joins all files found in a directory to a

* single multi-frame pgm.

* @author Simon Gustafsson */

#include <iostream>
#include "VideoSource.hh"
#include "VideoSink.hh"

using namespace std;

2MPlayer is an open source media player.

25

6. Implementation

int main(int argc, char* argv[]){
if(argc!=3){

cout << "Usage: "<< argv[0]
<< " input_directory_or_file output_file.pgm" << endl;

return 1;
}

int w=640;
int h=480;
string destpath = argv[2];

VideoSource* s =new VideoSource(argv[1],&w, &h);
unsigned char* data = new unsigned char[w*h];
VideoSink* sink=new VideoSink(destpath,w,h);

if(!sink->OK()){ return 1; }

while((sink->OK()) && (!s->isLast())){
s->getGreyImage(data);
sink->add(data,w,h);
};

if(!sink->OK()){ return 2; }

delete sink;
delete[] data;
return 0;

}

Besides using image sequences captured with the grabber card, it is possi-
ble to convert movies into the appropriate pgm-format or YUV4MPEG2 formatif
mplayer is installed on the system. To extract all frames from an arbitrary movieas
pgm-images, go into the destination directory, and run “mplayer
/path/filename.avi -nosound -vo pnm:pgm” in the directory you
would like to save all frames in. To convert all those images into a single multiple-
frame pgm-file, use the example application above.

6.1.5 VideoSink

The VideoSink class stores a sequence of images as a multiple frame pgm-file. For
a usage example, see the example code in section 6.1.4.

6.1.6 GrabberThread

The GrabberThread class is a thread class, which can run concurrently with the
main application. Its sole purpose is to grab frames from files or video devices.
All grabbed frames are stored in a circular buffer to allow the main thread to lag
behind for short periods of intense processor usage.

Example GrabberThread usage
int w=320; int h=240;
GrabberThread gt(w,h,"video_source_file.pgm",25);
unsigned char* buff; //Should not be allocated separately
gt.start();
while(!gt.isLast()){

if(gt.hasFrames()){ //Do we have a new frame to process
buff=gt.getNextBuffer(); //Get buffer of new frame

//maybe do some preprocessing of buffer

26

6. Implementation

}

//do part of what we want to do with buffer

/* reschedule (we don’t want to use the entire timeslice, since it is *
* too long). Not rescheduling might also prevent GrabberThread from *
* being picked to buffer frames, which could lead to dropped frames. */
sched_yield();

}
gt.join();

6.1.7 MyScheduler

MyScheduler is a class used for cooperative multitasking. An application using
it can be found in section 7.2.2. This class contains round robin queues ofall
callbacks that should be scheduled, and the main loop of applications shouldcall
this class repeatedly to run the next item in the queue. It contains one queuefor
items that should be executed only once for each new frame, and a separate queue
for items which can run repeatedly.

6.2 Feature Detectors

6.2.1 HoughTransform

The HoughTransform class performs Hough transforms to detect line segments. If
line segments are repeatedly computed in a window of known size, several values
are precomputed to speed up the line detection process. More information about
the Hough transform can be found in appendix E.2.

6.3 Tracking and Clustering

Classes developed for tracking and clustering are described in this section. The
class LineTracker is a tracker for tracking line segments in images. It is followed
by two classes, which use SSD tracking, namely SSDSlowTracker and SSDShort-
CircuitTracker. Those classes are followed by classes for optical flowtracking.
FlowTrackerCore is useful for developing entirely new optical flow trackers, and
the FlowTracker class contain abilities for tracking patches with several different
motion models. The last class in this section is the PerspectiveTracker class,which
uses a cluster of several affine trackers to track perspective distortions.

6.3.1 LineTracker

The LineTracker class is used for basic line tracking, and can track bothhigh con-
trast lines as well as keep track of their extension. Appendix E.1 describes how it
works in more detail.

27

6. Implementation

6.3.2 SSDSlowTracker

The SSDSlowTracker class implements a basic SSD3 tracker. This tracker also
happens to be the computationally most expensive of the trackers implemented,
hence the name SSDSlowTracker. Its use should be limited to comparison against
other trackers. The tracker can only track translations of the tracked patch, and is
designed to track square patches of size2R + 1, whereR can be seen as the radius
of the patch. The principle behind it is described in section 2.1.

Example SSDSlowTracker usage
int w,h; int radius=20;
VideoSource g("video.pgm", &w, &h);

/* Allocate buffer _AFTER_ construction of VideoSource, since *
* width and height altered to match values in the file "video.pgm". */

unsigned char* image = new unsigned char[w*h];

g.getGreyImage(image); //get first frame

/* Create square tracker with centre at (w/2, h/2), *
* and sides of length 2*radius+1 */

SSDSlowTracker ssd(image, w, h, w/2, h/2, radius);
ssd.setMaxSearchDev(5); //Setting max searching distance to 5 pixels

while(!g.isLast()){ // repeat until last frame
g.getGreyImage(image); // Get next frame
ssd.track(image,w,h); // use SSDSlowTracker to track patch

}

6.3.3 SSDShortCircuitTracker

The SSDShortCircuitTracker class is also an implementation of a basic SSD4

tracker. Contrary to the SSDSlowTracker, this tracker uses loop short-circuiting
(described in section 2.2) to reduce the computational load while tracking. Basic
usage of this class is identical to basic usage of the SSDSlowTracker class. The ex-
ample code for SSDSlowTracker (section 6.3.2) applies for this class as well after
changing the tracker class.

6.3.4 FlowTrackerCore

The FlowTrackerCore class contains the most important data structures and algo-
rithms needed to perform optical flow tracking. It is purposely designed tobe
“universal” such that as many different optical flow trackers as possible could use
this for their tracking.

It can handle weighting, and evaluation of parameters in either a single step,or
in two steps. It can also perform basic thresholding to handle occlusions or reflec-
tions better if thresholds are provided. It simply evaluates optical flow parameters
by using motion templates passed to this class. Keeping track of the current state
of a tracker or higher level functions are not performed by this class, and should be
handled by the classes which are using this class.

3Sum of Squared Differences
4Sum of Squared Differences

28

6. Implementation

Two feature of this class makes it special: it can be switched between sev-
eral types of tracking by the user, and its storage type is specified as a template
parameter.

Interestingly, more motion templates can be added after initialisation, resulting
in a possibility to enhance tracking capabilities as time goes by. The idea was to
make it possible to have a separate thread that first sets up a translation tracker, and
then adds the ability to handle scaling, rotation, up to perspective transformations
when the CPU is idle. That additional thread was however not implemented.

6.3.5 FlowTracker

The FlowTracker class was implemented to simplify everyday use of the Flow-
TrackerCore class. It presents a simple interface, common to all area trackers de-
veloped here. It can very simply be configured to track anything from translations
up to perspective distortions. Currently this class performs one tracking iteration
by beginning to track at the coarsest level, and going through all scales up to and
including the finest before returning (when -1 supplied to the track() function).

6.3.6 PerspectiveTracker

The PerspectiveTracker class demonstrates clustering of several trackers, and al-
lows tracking of perspective transformations. The individual trackerswould not
have been able to do that without treating them as a cluster. See section 3.2.4 for
more information.

6.4 Timing

This section describes classes related to timing. The first class described,the RTC
class, is designed for generating periodic interrupts faster then the system clock, to
allow more precise control over when functions are brought back fromsleep. The
other two classes described here, Stopwatch and MeasureCycles, aredesigned for
measuring time with very high precision.

6.4.1 RTC

The RTC class waits for periodic interrupts from the Real Time Clock (RTC).The
RTC class is used by the GrabberThread class (see section 6.1.6), whichis respon-
sible for serving frames as similar as possible to a live system when stored data
is used instead of live input. That required that a thread could be woken up from
sleep at regular intervals, at least up to 30 times per second. Kernels using a 100Hz
software clock (default for 2.4.x kernels) would be unable to wake up sleeping
processes with a resolution better then 10 ms, which would mean that the available
processing time for each frame would fluctuate by as much as± 33%. The RTC
class makes it possible to circumvent that problem, and makes it possible to sleep
for shorter periods of time even if the kernel is unable to do that.

Different kernels use different default system clocks, and the situation for x86
based kernels follows: the default for 2.4.x was 100Hz; the default starting from

29

6. Implementation

2.6.0 was 1000Hz; from 2.6.13, the software clock is a kernel configuration pa-
rameter which could be 100, 250 (the default) or 1000. Additionally, some ven-
dors have adjusted the system clock to other values as well. For kernels withfast
system clocks, nanosleep would be suited for sleeping with a high accuracy5, but
other kernels requires other means such as using the RTC to be able to sleepwith
a high resolution.

A few details have to be explained. To begin with, the class uses/dev/rtc
to be able to receive periodic interrupts, and that requires that/proc/sys/dev/
rtc/max-user-freq is set to a high enough value. That can be achieved
by putting echo 1024 > /proc/sys/dev/rtc/max-user-freq into
/etc/rc.local or any similar startup script. The “max-user-freq” set
previously determines the highest frequency of periodic interrupts that an applica-
tion running in user space can request. The RTC class has been verifiedto function
correctly with periodic interrupts up to 8192Hz, but for normal video processing,
values of 256Hz or 512Hz would be more suitable. As a side note, the class re-
sorts to using nanosleep when/dev/rtc is unavailable, or the requested interrupt
frequency was higher thenmax-user-freq.

6.4.2 Stopwatch

The Stopwatch class simplifies measuring of execution time for selected pieces of
code. It is designed to be used for code called repeatedly. Code called only once
should preferably be measured by using the MeasureCycles class instead, as there
is no need to gather statistics for non-repetitive functions.

The Stopwatch class returns four different parameters for each stopwatch: Its
name, and its minimum, mean, median and maximum execution time in either
clock cycles or milliseconds. Three properties of this class should be keptin mind
when using it:

Firstly, since the class provides statistics for median execution times, it has
to store all individual timings. That would require allocation of more and more
memory whenever the last allocated buffer gets filled. So Stopwatch should not be
used in code designed to run indefinitely.

Secondly, timing should not be nested, in the sense that one timer measures
execution of some block of code containing another timer. If that would be done,
reallocation of the array containing all timings would now and then add irrelevant
clock cycles to the code executed and measured.

Thirdly, to make the measurements as easy as possible to add to existing code,
a decentralized way to identify and keep track of all timings was employed. Strings
passed to their constructors identify the stopwatches, and that identity is kept even
when a stopwatch is destroyed and created several times. Measurements between
the start of and the stop of a stopwatch can be printed either as the number ofclock
cycles spent in execution, or as the number of used milliseconds.

Example Stopwatch usage
Stopwatch t1("int=int*int");
Stopwatch t2("float=float*float");

5man nanosleep currently incorrectly states a 10 ms resolution, it really is 1/”software clock”

30

6. Implementation

int int1=5; int int2=6; int int3=7;
float float1=5.01; float float2=5.02; float float3=5.07;

for(int i=0; i<50; i++){
t1.start();
for(int j=0; j<100; j++){ int1=int2*int3; }
t1.stop();
t2.start();
for(int j=0; j<100; j++){ float1=float2*float3; }
t2.stop();

Stopwatch t3("Overhead"); // Works, even though created and destroyed
t3.start(); // 50 times before the results are printed.
t3.stop();

}
cout << Stopwatch::getStat() << "\n" << t1.getStat_as_ms() << "\n";

6.4.3 MeasureCycles

The MeasureCycles class measures CPU clock cycles using the “rdtsc” instruc-
tion available in protected mode for Pentium Pro and later and in all newer AMD
processors.

Since this instruction executes in parallel with other instructions, some other
people prefer to execute acpuid instruction before and after executing each
rdtsc instruction, to wait for the processor to completely finish all current instruc-
tions in the pipelines before issuing therdtsc instruction. That adds a significant
overhead, and it was decided that it would be better to repeat the measurements,
then to add an overhead of several hundred clock cycles.

Example MeasureCycles usage
/* To measure cycles during 1 second, to be able to calculate timing

* in milliseconds (only done for first instantiation of the class). */
MeasureCycles c;

/* Alternative initialisation to specified core frequency without

* measuring, avoiding the 1-second delay otherwise imposed. */
// MeasureCycles c(2000000000);

typedef MeasureCycles::ull ull;

ull start, stop;
start = c; //equivalent to c.getCycles();
call_to_function_to_measure();
stop = c;

cout << "Clocks used: " << start-stop
<< " approximate time: " << c.as_ms(start-stop) << "ms\n";

The added overhead of measurement on my compiled version6 was never lower
then 28 cycles, but would occasionally get as high as 255 cycles. Thosefluctua-
tions are mostly related to caching, pipelining, branch prediction, out-of-order ex-
ecution, and other features of the CPU. For very long measurements, scheduling
and interrupts are going to be a problem, making it difficult to measure anything
else then the total time of execution. In those occasions, measurements of max,

6Amd 64 3000+ socket 754, gcc version 3.3.2 20031022, profiling not enabled

31

6. Implementation

min, median and average time makes more sense, and the Stopwatch class could
be used for that.

For my CPU, the overhead equates to measurement errors normally close to
14 ns, occasionally as high as 128 ns. As a comparison, gprof which could be
used to measure execution time of functions, uses a sampling period of 10 ms,
resulting in errors up to 10 ms or 20 000 000 cycles for one-shot measurements on
the same CPU. In addition to that, the overhead from enabling profiling for very
short functions is sometimes even larger then the execution time of the functions
themselves.

6.5 NCurses

It was discovered that one large bottleneck of many tracking implementations was
their slow output of status information to the terminal. One promising solution
would be to use ncurses to output that information to the terminal, instead of having
output written to the scrolling terminal handled by the X server. After some basic
ncurses functionality was implemented, it was however discovered that a large part
of the issue was caused by excessive use of “cout << ... << endl;”. The
endl was not only causing a new line to be written, but also flushed all buffered
data to the screen, instead of handling writes to the screen at more appropriate oc-
casions. The simplest way around it would be to always use “cout << ... <<
"\n";” instead.

By the time of that discovery, a working quite transparent wrapper for use
of ncurses had been implemented. The remaining increase of performancefor
applications using this output method caused ncurses support to stay in the project.

The class OutputWrapper is the central class for a programmer adding ncurses
support. It can be used to redirect cout and cerr to an ncurses display, and if the
output from the program already is displayed as a few lines with repetitive infor-
mation, only a command to flush output to the screen has to be issued each time
the virtual page should get written to the physical screen. See section 6.5.1for an
example.

6.5.1 OutputWrapper

OutputWrapper is a class that simplifies writing to the terminal without
scrolling, with simple switching between normal output to stdout and output
to an ncurses terminal. The most practical aspect is the ability to steal cout
and cerr, redirecting their output to the ncurses screen without having tocare for
anything else. The only thing to remember is to replace “... << endl" with
"... << "\n"” in all outputs, or calling “((OutputStreambuf*)
rdbuf())->disableSync()” for the OutputWrapper class, to avoid updat-
ing the screen when not wanted.

Example OutputWrapper usage
#include "OutputWrapper.hh"
#include <iostream>

using namespace std;

32

6. Implementation

int main(){
OutputWrapper out;

//redirect cout and cerr to OutputWrapper
out.setMode(OutputWrapper::NCURSES | OutputWrapper::STEAL_BOTH);

//process data, use paged output
static int max_bottles=100; //=INT_MAX;
for(int i=max_bottles; i>0;i--){

cout << i
<< " bottles of beer on the wall " << "\n"; //redirected above

cerr << i << " bottles of beer. "; //also redirected
out << "Take "; //always available
if(i==1) cout << "it"; else cout << "one";
cout << " down and pass it around - " << "\n";
if(i==1) {cerr << "NO MORE bottles of beer on the wall!!"; }
else { cout << i-1 << " bottles of beer on the wall. "; }
out.newPage(); //flush page to screen and clear temporary page
sleep(1);

}
}

6.5.2 OutputStreambuf

OutputStreambuf is an implementation of a Streambuf class, which is used to out-
put data to ncurses windows. Direct use of this Streambuf is discouraged, as the
OutputWrapper allows easier interfacing, as well as the ability to directly use io-
manipulators when outputting data through that class.

The OutputStreambuf can however be initialised to output data only to a spe-
cific rectangular area of the screen, but even then it should preferably be wrapped
by using the Streambuf as an argument to the constructor of an OutputWrapper.
Note that each window has to be flushed to the screen separately. Also notethat
ncurses behaviour is unspecified when overlapping areas are used,so overlapping
between different windows should never be forced by a user.

6.5.3 NCursesUser

NCursesUser is a helper class that should be inherited by classes using ncurses, to
provide a callback which is called when ncurses is enabled or disabled globally,
and optionally to provide a callback for terminal resize events

Make sure that the callback functions is not using NCursesClass in such away
that infinite loops could occur, at least by not letting the NCURSES_OFF() and
NCURSES_ON() call NCursesClass::forceMode().

Example derivation from NCursesUser
#include "OutputWrapper.hh"

class OneNCursesUser : private NCursesUser{
public:

OneNCursesClass(){
//the callback functions are registered automatically just
//before the body of the constructor begins to execute.

if(NCursesClass::isActive(){
//do something special if ncurses active

}else{
//avoid doing bad things if ncurses not activated yet.

33

6. Implementation

}
}

private:
//Callback functions
void NCURSES_OFF(){

//put the class into some state avoiding use of ncurses functions
}
void NCURSES_ON(){

//put the class into some state allowing use of ncurses functions
}
void NCURSES_RESIZE(){

//when this is called, the terminal has been resized.
int newx = NCursesClass::getWidth();
int newy = NCursesClass::getHeight();

}
};

6.5.4 NCursesClass

NCursesClass is a helper class for coordination between NCURSES, Output-
Streambuf and OutputWrapper. It should normally not be used by application
programmers directly.

6.6 Additional Supporting Classes

This section described some useful support classes developed duringthis work.
They contain a very simple command line argument parser named ArgumentParser,
classes for reading and writing data to m-files (for use by Octave or Matlab), and a
class that simplifies testing for Ctrl-C key presses.

6.6.1 ArgumentParser

The ArgumentParser is a basic class, which facilitates parsing of command line
arguments. It provides parsing of integers, floating point numbers, switches and
string arguments. Switches can be either 0 or 1, depending on their absence or
presence at the command line. All other variables keep their values when they are
absent on the command line, providing an easy implementation of default values.
The class automatically documents all possible command line arguments and their
default values. Additional documenting strings can be inserted to further describe
the use of command line arguments.

Example ArgumentParser usage
#include "ArgumentParser.hh"
#include <iostream.h>

using namespace std;

int main(int argc, char* argv[]){

int on; //binary switches can not have default values
int off;
int one_int = 2; //default value
double one_double = 3.2; //default value
string one_string = ""; //default value
string unparsed_1 = ""; //default value

34

6. Implementation

string unparsed_2 = "some default string"; //default value

ArgumentParser p;
p.addHelp("This is some test program for argument parsing\n");
p.addHelp("Try it with some of these binary switches:");
p.addSwitch("-on",&on,"To turn something on...");
p.addSwitch("-off",&off,"To turn something off...");
p.addHelp("\nTry some other switches, expecting numbers and strings:");
p.addInt("-one_int",&one_int,"Stored into local variable one_int");
p.addDouble("-one_double", &one_double,"This is some number");
p.addString("-one_string", &one_string,"comment...");
p.addHelp("\nIt can catch arguments not preceded by tokens:");
p.addUnparsed(&unparsed_1,"only this has comment, not the other");
p.addUnparsed(&unparsed_2);

if(argc==1){
cout << p.getHelp() << endl;
exit(0);

}
p.parse(argc,argv);

cout << "on=" << on
<< "\noff=" << off
<< "\none_int=" << one_int
<< "\none_double=" << one_double
<< "\none_string=" << one_string
<< "\nunparsed_1=" << unparsed_1
<< "\nunparsed_2=" << unparsed_2
<< endl
<< "------------------------"
<< endl
<< "parse errors: \n"
<< p.getErrors()
<< endl;

}

6.6.2 MFileReader

The MFileReader class is used for reading numbers stored as vectors in m-files7.
It has no knowledge of any other aspect of Octave then vectors, and will not be
able to process files containing commands, or any other type of matrices then one-
dimensional vectors.

The class is designed to completely ignore everything after the line

%====[end of data (MFileReader won’t read past this line)]====

which automatically got added by MFileWriter. Below that line, any kind of com-
mands or even garbage can be inserted without interfering with MFileReader.

Example MFileReader usage
MFileReader m("results.m");

for(int i=0; i<m["x"].size(); i++){
cout << "x[" << i << "]=" << m["x"][i] << ", "

<< "xx[" << i << "]=" << m["xx"][i] << endl;
}
vector<double> x = m["x"]; //to improve performance, get access

//to the vector directly, instead of
//having to look up the vector
//through m["x"] during each access.

7m-files are files containing Matlab (or Octave) data and commands.

35

6. Implementation

6.6.3 MFileWriter

The MFileWriter class provides a way of writing vectors to an m-file. The write
to the specified file is postponed until the destruction of the class, and until then
all added vectors are stored in memory. The vectors to be written are storedone
number at a time as can be seen in the example code below.

It is also possible to add any number of arbitrary strings, which will get ap-
pended to the end of the m-file. That facilitates writing applications, which in ad-
dition to storing valuable data, also could append all commands needed to process
and evaluate that data in either Matlab or Octave.

Example MFileWriter usage
MFileWriter m("results.m",

"%example of squaring a number, where xx(i)=x(i)*x(i)");
for(int i=1; i<4; i++){

m.addToVector("x",i);
m.addToVector("xx",i*i);

}
m.appendString("deviations=xx-x.*x;");
m.appendString("max_abs_deviations=max(abs(deviations))");
m.appendString("plot(x, xx, \";computer;\",x, x.*x, \";octave;\")");

The code above would create this m-file:
results.m

%Example of squaring a number, where xx(i)=x(i)*x(i)

%=====================[start of data]=========================

x = [1;
2;
3];

xx = [1;
4;
9];

%====[end of data (MFileReader won’t read past this line)]====

%======================[Appended commands]====================

deviations=xx-x.*x;
max_abs_deviations=max(abs(deviations))
plot(x, xx, ";from computer;", x, x.*x, ";according to octave;")

%===============[end of appended commands]====================

Running the m-file in Octave would produce the expected plot, as well as print-
ing the linemax_abs_deviations = 0, indicating that the algorithm in oc-
tave gave the same answer as the algorithm of the C program. This example might
seem trivial, but the principle is very useful for checking implementations first
written in Octave (or Matlab) against their reimplementations in C.

As a side note: For those using Octave, the installation of octave-forge is rec-
ommended, as this adds many additional commands. This class does not depend
of the presence of any commands at all, but users of this class might want to use
functions not yet included in the standard Octave distribution.

36

6. Implementation

6.6.4 MY_CTRLC_TRAPPER

MY_CTRLC_TRAPPER is a class that intercepts the SIGINT signal (Ctrl-C), and
makes testing for it quite easy. If desired, it can be initialised to call the previous
SIGINT handler after a specified number of SIGINT signals.

Example MY_CTRLC_TRAPPER usage
MY_CTRLC_TRAPPER ctrlc(3); //intercept Ctrl-C 3 times before calling

//previous SIGINT handler.
//Use 0 to never call previous SIGINT handler.

for(int i=0; i<INT_MAX; i++){
sleep(1);
if(ctrlc.pressed()){ break; }

}

6.7 Deprecated Classes

This section describes some of the classes, which for various reasons were not com-
pletely finished or got replaced by other classes but still deserve a special mention
in the report.

6.7.1 SMatrix

This class is deprecated – use arrays or CASMatrix instead.
There was a number of reasons why something else then CASMatrix8 was

wanted for matrix calculations. The first reason for developing SMatrix was that
CASMatrix lacked the ability to define the storage type of its elements. Other rea-
sons included the inefficiencies in the multiplication routine in CASMatrix
(see section D.2.1), the poor performance when handling small objects (see sec-
tion D.2.2), the fact that CASMatrix by default always is compiled with optimisa-
tions disabled, and that licensing restrictions9 prohibits distribution of CASMatrix
in source format.

The most valuable insight from the development of this class might be the op-
timised multiplication routine. Some comparative measurements10 can be found
in tables 6.1 and 6.2. Note that the performance increase of usingSMatrix::
mul_and_assign with optimisations over usingCASMatrix::operator*
without optimisations is 9.5 times faster execution when multiplying 10x10 ma-
trices, and that the difference grows slightly for larger matrices. Hopefully the
lessons learned could be integrated into CASMatrix, as suggested in sectionD.2.

The reasons for deprecating this class in this project was that matrix inverse
and singular value decomposition never got implemented, resulting in the need of
going through CASMatrix for that functionality. Another reason was that the data
was stored according to the less normal FORTRAN convention. The choiceof
the less popular FORTRAN ordering made the class more efficient in this partic-
ular project, where more matrices with many rows was used then matrices with

8the already developed candidate in NOMAN, which is a local source code repository.
9CASMatrix uses some code from “Numerical recipes”, which cannot be redistributed freely in

source format.
10All Measurements in core cpu cycles on an Athlon 64 3000+ with 512 KB L2-cache.

37

6. Implementation

Table 6.1: Comparison of multiplication when using SMatrix or CASMatrix, when
both compiled with optimisations enabled (-O2 -DNDEBUG). Values in parenthe-
sis compare speed with that of CASMatrix, and the other value is the measured
median number of clock cycles for the multiplication.

Compiled with optimisations enabled
matrix CASMatrix:: SMatrix:: SMatrix::

dimension operator* operator* mul_and_assign
3x3 1346 (100%) 1292 (104%) 378 (356%)
5x5 3269 (100%) 1697 (193%) 822 (398%)

10x10 17849 (100%) 7907 (226%) 5938 (301%)
100x100 13244775 (100%) 3490105 (380%) 3414891 (388%)

1000x1000 (100%) (479%) (480%)
3333x3333 (100%) (612%) (614%)

Table 6.2: Comparison of multiplication when using SMatrix or CASMatrix, when
both compiled without optimisations enabled. Values in parenthesis comparespeed
with that of CASMatrix, and the other value is the measured median number of
clock cycles for the multiplication.

Compiled with optimisations disabled
matrix CASMatrix:: SMatrix:: SMatrix::

dimension operator* operator* mul_and_assign
10x10 56425 (100%) 23657 (239%) 21323 (265%)

100x100 50330099 (100%) 16990850 (296%) 16810706 (299%)
1000x1000 (100%) (430%) (453%)
3333x3333 (100%) (496%) (492%)

many columns. Yet another reason for not using this class was that lazy evalua-
tion to remove unnecessary use of temporary objects (see section D.2.2) was not
implemented. Without lazy evaluation, users of this class would have to call many
different specialized functions of the class to get even more additional performance
increases, instead of being able to write arithmetic matrix expressions as usual.

6.7.2 SSDFlowTracker

This class is deprecated – use FlowTracker instead.
The SSDFlowTracker class is an optical flow tracker. The class can track two

dimensional translations, translations combined with rotation, or full affine motion.

6.7.3 SSDFlowTrackerRect

This class is deprecated – use FlowTracker instead (unless the dynamic selection
of proper pyramid levels is very important).

The SSDFlowTrackerRect class can track two dimensional translation, trans-
lations combined with rotation, or even full affine motion. This class dynamically
selects a proper pyramid level based on how large the deviation of the tracker is

38

6. Implementation

between each new frame. Additionally, it treats iterated tracking of the same frame
specially: it can track at finer pyramid levels while iterating, and switch back tothe
coarser scale when a new frame is received.

6.7.4 ClusterPoints

This class do not provide a suitable API for use beyond experimentation.
ClusterPoints was a helper class used when testing clustering of points based

on equidistance in subsequent frames. The code intestClustering.cc could
be examined for usage hints and code from that file should preferably betransferred
to the ClusterPoints class. Additionally, ClusterPoints currently only providestext
output of identified clusters, which is of little use beyond testing.

39

Chapter 7

Experimental Evaluation

These experiments were carried out on a computer with the following specifica-
tions:

Table 7.1: Specification of test system
CPU AMD AthlonTM64 Processor 3000+ (2GHz core, 512 KB cache)
RAM 1024 MB PC3200
MBoard Abit NF8

When the code was compiled and linked with profiling information and analysed
with gprof, the resolution was not accurate enough. Therefore, all time measure-
ments below were collected using therdtsc instruction and knowledge of the
core frequency. The Stopwatch class described in section 6.4.2 was constructed to
handle these time measurements.

7.1 Evaluation of Area Trackers

This section briefly describes the results of measurements performed while evalu-
ating the area trackers.

7.1.1 Time Consumption

These measurements allow comparison of time consumption to be performed be-
tween some of the implemented trackers. It also shows the difference between
interpolation types, as trackers using nearest neighbour (NN) interpolation were
measured separately from those who use linearly interpolated values (IP). The mea-
surements could also be used to determine the maximum number of simultaneous
trackers allowed.

Time measurements for any tracking iteration for the optical flow tracker Flow-
Tracker are located in table 7.2. Table 7.3 contains measurements for SSDSlow-
Tracker, and table 7.4 have measurements for a short-circuited tracker.

These results could be summarised by stating that optical flow trackers by far
outperform the other correlation based SSD trackers in term of computational ef-
ficiency. It is also clear that the impact of interpolating pixel values instead of

40

7. Experimental Evaluation

Table 7.2: Time for tracking measurements for a FlowTracker with dimension
81x81, using every fourth pixel only in each direction

Tracker type
Warp Optimiseda Not optimisedb

typec (ms) (ms)

Translation
NN 0.0502 0.1063
IP 0.0606 0.1183

Translation & rotation
NN 0.0722 0.1347
IP 0.0816 0.1528

Affine (two step)
NN 0.0857 0.1768
IP 0.0956 0.1949

Perspective (one step)
NN 0.0980 0.2273
IP 0.1042 0.2382

aMedian time for tracking if compiled with optimisations enabled “-O2”
bMedian time for tracking if compiled without optimisations
cNN = Nearest Neighbour’s value, IP = Interpolated pixel value

Table 7.3: Time for tracking measurements for an SSDSlowTracker with dimension
81x81

Max search distance Optimiseda Not optimisedb

(pixels) (ms) (ms)
5 2.584 17.28

10 9.743 65.16

aMedian time for tracking if compiled with optimisations enabled “-O2”
bMedian time for tracking if compiled without optimisations

Table 7.4: Time for tracking measurements for an SSDShortCircuitTrackerwith
dimension 81x81
Max search distance

Optimiseda
min time average time max time

(pixels) (ms) (ms) (ms)

5
YES 0.472 2.655 5.38
NO 1.165 6.938 15.51

10
YES 1.089 5.885 12.89
NO 2.634 15.22 31.89

aWhether class compiled with optimisations enabled “-O2”

using nearest neighbour interpolation is very small, so there is no real reason to
avoid using the better interpolation. The only real surprise was that short-circuited
tracking in some circumstances performed worse than SSD tracking without short
circuiting, but only when both were compiled with optimisations enabled.

41

7. Experimental Evaluation

7.1.2 Deviation from Expected Position

Tests for measuring the deviation of trackers from their supposed positionhas been
constructed. Those tests used an image displaced with known displacements,and
the positions of trackers following parts of the image were saved to be processed
later. More about those experiments can be found in the later parts of section 2.4.1.

7.1.3 Step Response

This section will demonstrate how a small perturbation is handled by the
tracker. It is a good “sanity-check” of trackers, and can find errors such as in-
correct centre-points of trackers or other initialisation errors. By design, optical
flow trackers should respond very quickly to changes as long as the changes are
small.

The optical flow tracker was repeatedly tracking an identical image. The
tracker was however displaced one pixel in x and y direction from its initial po-
sition in the first iteration, so the results demonstrates how the tracker converges
towards its initial position. Figure 7.1 shows a typical convergence back to the
original position. For some patches, the tracker converges back to the initial posi-
tion. For some other patches, such as the one used in figure 7.1, the tracker instead
converges to a position very close to the original position. Note that the tracked
image was downscaled, so the deviation as perceived by the tracker is 0.1 pixels,
not 0.2 pixels.

1.00

0.75

0.50

0.25

0.00

1.000.750.500.250.00-0.25

dy
 (

pi
xe

ls
)

dx (pixels)

Figure 7.1: Typical path of tracker converging back toward true positionafter large
displacement (affine tracker using linear interpolation in warp, downscaling 1).

The distance from the initial position to the tracker’s current position is also
plotted in figure 7.2. That figure clearly shows the difference between using nearest
neighbour interpolation and linear interpolation. Note that the tracked image was
downscaled by the factor two, so the deviation as seen from the tracker is half of
the values in those plots.

42

7. Experimental Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20

de
vi

at
io

n
(p

ix
el

s)

iteration

(a) Using linear interpolation in warp

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20

de
vi

at
io

n
(p

ix
el

s)

iteration

(b) Using nearest neighbour interpolation in
warp

Figure 7.2: Deviation in pixels plotted against tracking iteration for tracker whose
position was forced off target. The two figures show the difference caused by dif-
ferent means of warping.

7.1.4 Extension of Range for Optical Flow Trackers

Since optical flow trackers by design is limited to tracking relatively small motions,
a few ways to make them handle larger motions could be desired. A couple of
methods extending their range are described here:

Subsampling the image to track is very common in combination with these
trackers. Subsampling by a factor always increases the trackable range by the same
factor. At the same time, subsampling reduces the amount of information in the
patch, making it easier to loose the tracked patch when too little useful information
remains in the patch.

Blurring the image to track is another way to increase the trackable range. It
works by removing high contrast areas in the images, and produces larger areas
with gradients. Unfortunately, it does not provide a directly proportionalrelation
between change of parameter and estimation of parameter for the full rangeof
trackable motion. The lack of proportionality is however not a deal breaker, as
iterated tracking still yields the correct result fairly quickly.

A third way of increasing the trackable range is by making the differentiat-
ing kernel wider. If no blurring were applied, this way of increasing the trackable
range would maintain a directly proportional relationship between the applied dis-
placement and the measured displacement. At the same time, this method is more
sensitive to noise and experiences more difficulties with textured areas thentrack-
ers using the smallest differentiating kernel.

Figure 7.3 shows the relationship between a real-world displacement of a
tracker, and the tracker’s calculated displacement after one iteration. The influ-
ence of different amounts of blurring, and different lengths of the differentiating
kernel can be seen.

43

7. Experimental Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

m
ea

su
re

d
di

sp
la

ce
m

en
t (

on
e

ite
ra

tio
n)

true displacement

blur=1, diff=3

blur=1, diff=5
blur=3, diff=3

blur=3, diff=5

blur=5, diff=3

blur=5, diff=5

Figure 7.3: Measured displacement versus true displacement. “blur” denotes the
width of the blurring kernel, and “diff” denotes the width of the differentiating
kernel. The tracked object was a vertical edge.

7.1.5 Behaviour at Different Tracking Speeds

Here, an image was translated in a square pattern for five revolutions. Each revo-
lution was performed with increasing speed. The results (image 7.4) are very good
at lower speeds (within fractions of a pixel). First at the highest speed,the tracker
without prediction started to loose accuracy.

Experience shows that the more parameters a tracker tries to estimate, the worse
it performs at these tests. The reason behind that is the interdependencybetween
all parameters solved by the tracker, and the fact that small estimation errors are
unavoidable. It would hence be inexpedient to use trackers tracking more complex
motion models than necessary.

44

7. Experimental Evaluation

 118

 120

 122

 124

 126

 128

 130

 158 160 162 164 166 168 170

(a) Downscaling 2 and prediction used

 118

 120

 122

 124

 126

 128

 130

 158 160 162 164 166 168 170

(b) Downscaling 2 and no prediction used

Figure 7.4: Tracked centre coordinates of a patch in an image translated at speeds
of 0.1, 0.25, 0.5, 1 and 2.2 pixels/frame. One square path was followed at each of
those speeds, and the slowest speeds generated the paths most similar toa square.
As expected, tracking starts to deteriorate at 2.2 pixels/frame, since that corre-
sponds to movements >1 pixel/frame in the downscaled image.

45

7. Experimental Evaluation

7.2 Applications

7.2.1 Star Photography

One application taking advantage of sub-pixel resolution tracking could bepho-
tographing star constellations in the night sky. If that is done with an ordinary
digital camera instead of through a telescope, the amount of light entering the
camera could be too small to get sufficient image quality. One solution available
besides acquiring a more sensitive camera includes using longer exposure times.
A motorised support for the camera might then be called for, since the prolonged
exposure time otherwise would blur the moving stars.

The solution tested in this section used a noisy low sensitivity camera1 mounted
on a standard tripod. About 130 consecutive pictures were taken of thenight sky
using eight second exposure, aperture f/2.8, and a sensitivity of ISO200. Those
camera settings resulted in individual pictures where the brightest stars were visi-
ble, but many stars were not perceivable in the noise.

If a fixed camera were capturing several images of a static scene, it wouldbe
trivial to decrease the impact of noise by averaging a large number of captured
images. When it comes to decreasing noise by averaging several images ofa mov-
ing scene, the difficulties increase. First of all, one has to model the deviation of
the objects from their original positions. Secondly, artefacts such as distortions
introduced by the imaging process (most notably projective distortions, barrel dis-
tortion, and distortions caused by the atmosphere) might have to be dealt with.
When the movements of the objects in the image frames are known, those objects
could be warped back into their original positions in the first frame, making the
process of averaging noise out of the images trivial.

The process employed to determine the motion of the sky is outlined in this sec-
tion. The used model of the movements of stars was really simple: It is assumed
that the only possible deviations of the stars are caused by rotation. In the first ac-
quired image, bright spots were automatically selected as features for optical flow
tracking. Those features was tracked, and only features equidistant to each other
throughout all frames were used to reverse the motion of the stars in all frames.
The required condition that the distancedi,j betweenstari andstarj should be
constant throughout all frames is valid for all motions that can be modelled asany
combination of rotation and displacement. The motion of the equidistant stars re-
veals the centre of rotation, and then the angle of rotation is determined by follow-
ing the star furthest away from the centre of rotation. The current implementation
does however require an approximate centre of rotation to be entered manually to
determine the true centre of rotation. After the motion of the stars was reversed in
all images, all frames were summed together, resulting in a brighter image with a
considerable decrease of noise. Much fainter stars than before couldbe detected in
the enhanced image as seen in figure 7.5.

1A Panasonic FZ20.

46

7. Experimental Evaluation

(a) first frame (b) after processing according to sec-
tion 7.2.1.

Figure 7.5: Virtually elongated shutter time by averaging several motion compen-
sated exposures (100% crops of inverted images, with levels changed toreveal
more details)

7.2.2 Iterative Tracking

Iterative tracking has the tendency of increasing the accuracy of tracking, espe-
cially when optical flow trackers are used. A test application for experimenting
with iterative tracking was developed. The results of iterating tracking couldbe
seen in figure 7.1. That figure indicates that iteration generates better results, espe-
cially when linear interpolation is used internally by an optical flow tracker.

The main goal of this application was to allow the trackers to be iterated as
much as possible without having to drop frames, or making other applications un-
responsive. To achieve that, a design with two separate threads was used. Both
threads are depicted in figure 7.6.

The sole purpose of the first thread is to acquire images. That thread enters
a sleeping state until a new image is captured. Currently, it works when using
images stored on a hard drive, but whether it works with specific video hardware
also depends on the kernel drivers for those particular capture devices. In general,
the kernel should reschedule tasks whenever a thread waits for a device, so in
general, the proposed solution should work.

The second thread of the application is responsible for processing all captured
frames. The core idea is to use cooperative multitasking, where round robin is used
to select which tracker to run next. The tracker tracking the longest time agowould
always be the next one executed. Additionally, the kernel is given the opportunity
to reschedule some other task every time a tracker has been executed. That would
ensure that the frame capturing thread could be woken up without having towait for
an entire time slice to expire, at the same time as other tasks is given the opportunity
to function even though close to 100% of the CPU is used for iterated tracking.

To prevent excessive waste of the CPU, there are methods that individual track-
ers could use to disable further iteration for itself until the next frame is received,
but the current trackers has not been modified to use that possibility yet.

47

7. Experimental Evaluation

SLEEP UNTIL
NEW FRAME

STORE IN
CIRCULAR

BUFFER

(a) Frame capturing
thread

NEW
FRAME?

RUN PREDICTORS

DELETE TRACKERS
OUTSIDE FRAME

RUN ONE TRACKER

RESCHEDULE

YES

NO

(b) Frame processing thread

Figure 7.6: The two threads in the application

7.2.3 Tracking of Three Dimensional Boxes

An application to test tracking of three dimensional boxes was created. Theimple-
mented box tracker was described in chapter 5, and some results from its evaluation
are presented here.

The idea was to use a calibrated camera and a box of known dimensions, mak-
ing it possible to determine the pose of the box by knowing the corners of oneside
of the box. In theory, it would be possible to track the box as it is rotated even if
the tracker only was initialised with the first side of the box.

The optimistic attempt of only initialising the tracker with the first side of the
box turned out to not work in practice. Figure 7.7 shows a few snapshotsfrom
these experiments. Figure 7.7(a) shows the box when it was initialised, and 7.7(b)
shows the box right before using the box model to initialise the tracker for theleft
side. It can be seen that the deviation between the box model and the physical box
still is small although it is present. Figure 7.7(c) shows a larger deviation between
the physical box and the box model, which is propagated since the back tracker of
the box now is going to be initialised in the wrong way. Figure 7.7(d) finally shows
when the tracker (solid lines) starts to loose tracking completely.

It turned out that the somewhat optimistic goal of only having to initialise track-
ing of the first side of the box, and let the tracker automatically initialise the other
sides whenever needed was not viable in practice. Small errors are amplified by

48

7. Experimental Evaluation

(a) Box and model, early frame. (b) Box and model, before switching to left side.

(c) Box and model, before switching to back side. (d) Box and model, about to loose track.

Figure 7.7: Tracking of a 3D box. Solid lines show the borders of the current
tracker. Dotted lines show a projection of the box model.

perspective effects, and reliable tracking would require some method to ensure that
a tracker is initialised correctly. I would recommend initialising all six sides of
the tracker manually. The deviations between the tracked box and the box model
would then be similar to the deviation in image 7.7(b). Alternatively, targets of
known positions and dimensions could be added to all sides of the box, to allow
automatic alignment of the box model before the box tracker initialises new track-
ers for new sides.

49

Chapter 8

Conclusions

8.1 Regarding Area Trackers

A variety of area trackers were implemented, and their time consumption was com-
pared to each other in section 7.1. Optical flow trackers turned out to be thefastest
trackers as expected. They are about 40 times faster then their corresponding SSD
trackers, while providing resolution in the sub-pixel range. On the other hand, op-
tical flow trackers have to be iterated somewhat when the tracker is jumping larger
distances (see section 7.1.3) to settle over the best fit, but optical flow trackers are
nevertheless far superior in regard of time consumption.

An interesting property of the optical flow trackers was the close to 10% differ-
ence in time consumption caused by two different ways of warping the input image,
leading to a selection of the slightly slower interpolating warp algorithm causing
a slight increase in precise tracking of small motions. Other possible choicesof
warping algorithms could have been nearest-neighbour warping, or two-pass warp-
ing.

It is also noteworthy that short-circuited SSD trackers exhibited improvements
in their average tracking time over the slow SSD tracker when neither was opti-
mised, whereas the slow SSD tracker sometimes is slightly faster then the short
circuited tracker when both are compiled with optimisations enabled. This indi-
cates that one might have to consider worse performance from the short-circuited
tracker than expected at the beginning of this work. The short circuited tracker
could however be preferred if the complexity of the design is not a threat, and
spare computational time is useful for the application, even if only to decrease
power consumption. In mission critical systems, the computational resourceshave
to be large enough to handle the worst case of almost no difference in speed be-
tween using loop short-circuiting and ordinary SSD tracking.

8.2 Regarding Clustered Perspective Trackers

The idea of clustering several small trackers to track motion models which the in-
dividual trackers would not be capable of looked promising, but did notdeliver
any real performance increase. The test implementation only gave a 10% gain in

50

8. Conclusions

computation efficiency when affine trackers was used to track perspective distor-
tions (section 3.2.4). I would therefore not recommend the added complexity of
these clustered trackers over using perspective optical flow trackersdirectly.

8.3 Regarding Star Photography

Merging of several images of the night sky to reduce noise was tried because of
a pure personal interest. Other noisy image sequences might be merged aswell
to reduce noise if a suitable selection of initial trackers could be done (the star
photography application automatically selected which stars to follow). The result
was a palpable decrease of image noise, and many stars previously invisiblefor the
naked eye could be seen in the merged image.

The star photography application was also thought to provide excellent statis-
tics of time consumption of different algorithms and functions. It turned out that
gprof1 only sampled which function the program was occupying every 10 ms,
which was far too slow to generate useful statistics when each tracker finished
in much less then a millisecond. The use of therdtsc instruction was then inves-
tigated and made it possible to measure time consumption of sections of code at
much higher accuracy, with a resolution2 of a single CPU core clock cycle.

8.4 Regarding Tracking of Three Dimensional Boxes

An attempt to track the pose of three dimensional boxes was made without initialis-
ing more than the tracker for the front surface of the tracked box. During practical
use, it appeared as if the deviation between the model and the physical boxwas
doubled each time the system initialised a tracker for a new surface. That makes it
necessary to either initialise all sides of a tracked box before tracking is started, or
provide some other mean of the tracking system to determine the corner positions
for each new side of the box.

8.5 Regarding Line Tracking and Detection

An edge tracker based on the approach in [9] was constructed. It wasextended to
be able to handle tracking of lines, and the ability to determine endpoints of the
tracked line was also added (section E.1). Endpoint detection was not as reliable
as desired, but worked nevertheless in many circumstances.

Additionally, a line detector using the Hough Transform was implemented.
That detector precomputed and saved several intermediate values, suchthat re-
peated use of the detector for equally sized patches would be faster. It isalso
shown that detecting lines using the Hough transform for full frame video nowa-
days is very close to possible in real time even with unoptimised code. By using
8x8 patches, the number of additions to an accumulator was reduced 72 times for
images with a resolution of 320x240 pixels (section E.2.1). Future work should be

1see the gprof man pages for more information
2Although accuracy could be expected to be in the order of 28-255 clock cycles.

51

8. Conclusions

done to merge those individual segments into continuous line segments to gain real
benefits in line detection.

52

Bibliography

[1] S. Benhimane, E. Malis, “Real-time image-based tracking of planes using
efficient second-order minimization”,Proceedings of 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, September 2004, pp.
943-948

[2] Jean-Yves Bouguet, “Camera Calibration Toolbox for MatlabR©”, last visited
2007-02-22:
http://www.vision.caltech.edu/bouguetj/calib_doc/

[3] Scott A. Brandt, Christopher E. Smith, Nikolaos P. Papanikolopoulos,“The
Minnesota Robotic Visual Tracker: A Flexible Testbed for Vision-Guided
Robotic Research”,Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 1994, pp. 1363-1368.

[4] David Claus, “Camera Location”, last visited 2007-01-17:
http://www.robots.ox.ac.uk/~dclaus/cameraloc/cameraloc.htm

[5] Paul D. Fiore, “Efficient Linear Solution of Exterior Orientation”,IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol 23, no 2,
February 2001 pp. 140-148

[6] Agner Fog, “1. Optimizing software in C++: An optimization guide for Win-
dows, Linux and Mac platforms”, last visited 2007-02-20:
http://www.agner.org/optimize

[7] James D. Foley et al., “Computer Graphics. Principles and Practice. 2nd Edi-
tion in C”, Addison-Wesley, 1996, ISBN 0-201-84840-6

[8] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”, Second
edition, Prentice-Hall, 2002, ISBN 0-201-18075-8

[9] Gregory D. Hager & Kentaro Toyama, “X Vision: A Portable Substratefor
Real-Time Vision Applications.”,Computer Vision and Image Understand-
ing, 69(1):23-37, 1998.

[10] G. Hager, P. Belhumeur, “Real-Time Tracking of Image Regions with
Changes in Geometry and Illumination”, last visited 2007-01-17:
http://www.cs.brown.edu/courses/cs143/GuestLectures/Joe_Mundy/
hager-belhumeur.pdf

53

BIBLIOGRAPHY

[11] G.D. Hager, P.N. Belhumeur, “Efficient region tracking with parametric mod-
els of geometry and illumination”,IEEE Trans. Pattern Anal. Mach. Intell.
v20 i10, October 1998, pp. 1025-1039.

[12] Chris Harris and Mike Stephens, “A Combined Corner and Edge Detector”,
Alvey88, pp. 147-152

[13] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision”,
Cambridge University Press, 2000, p. 22, ISBN 0-521-62304-9

[14] D. Kragic and H. I. Christensen , “Tracking Techniques for Visual Servoing
Tasks”, Proceedings of the IEEE International Conference on Robotics &
Automation, April 2000, pp. 1663-1669.

[15] J. Shi and C. Tomasi, “Good Features to Track”,1994 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’94), 1994, pp. 593 - 600

[16] Bjarne Stroustrup, “Programmeringsspråket C++”, 3’rd edition,p.787-789,
ISBN 0-201-67504-8

[17] Roger Y. Tsai, Thomas S. Huang, “Estimating Three-Dimensional Motion
Parameters of a Rigid Planar Patch, II: Singular Value Decomposition”,IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol ASSP-30, no
4, August 1982, pp. 525-534

[18] “AMD Athlon TM Processor x86 Code Optimization Guide”, Publication
#2207, Rev. K, Advanced Micro Devices, Inc. February 2002

[19] “Software Optimization Guide for AMD64 Processors”, Publication #25112,
Rev.3.06, Advanced Micro Devices, Inc. September 2005

54

Appendix A

Affine Approximations of
Projective Transformations

This chapter describes how to derive affine approximations to perspective trans-
formations. Affine transformations are capable of approximating the effects of a
perspective transformation. The approximation works best for smaller areas, and
the steps to derive the approximation around some arbitrary pointx0, y0 are de-
scribed below.

Consider a perspective transformation

w′x′

w′y′

w′

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x
y
1

which we want to approximate as an affine transformation

x′

y′

1

 ≈

a11 a12 tx
a21 a22 ty
0 0 1

x
y
1

The approximative affine transformation should have some properties in common
with the perspective transformation:

• Equivalent midpointsx′
0, y

′
0

• Identical behaviour in an infinitesimal surrounding to the midpoints=⇒ can
be achieved by equating derivatives in that point

Those properties listed above gives us the following equations from the affine trans-
formation:

δx′

δx
= a11

δx′

δy
= a12

δy′

δx
= a21

55

A. Affine Approximations of Projective Transformations

δy′

δy
= a22

tx = x′

0 − (a11x0 + a12y0)

ty = y′0 − (a21x0 + a22y0)

Note that there are no higher order derivatives available from the affine transforma-
tion, telling us that the approximation problem can be seen as a first order Taylor
series expansion of the perspective transformation.

Combining the equations above with the following equations obtained from the
perspective transformation

δx′

δx
(x′

0, y
′

0) = (h11 − x′

0h31)/w′

0

δx′

δy
(x′

0, y
′

0) = (h12 − x′

0h32)/w′

0

δy′

δx
(x′

0, y
′

0) = (h21 − y′0h31)/w′

0

δy′

δy
(x′

0, y
′

0) = (h22 − y′0h32)/w′

0

would then give us an affine approximation of the perspective transformation valid
in the pointx′

0, y
′
0 and its closest surrounding:

x′

y′

1

 ≈

a11 a12 tx
a21 a22 ty
0 0 1

x
y
1

where the parameters (givenx0, y0) would take the following values:

w′

0 = h31x0 + h32y0 + h33

x′

0 = (h11x0 + h12y0 + h13)/w′

0

y′0 = (h21x0 + h22y0 + h23)/w′

0

a11 = (h11 − x′

0h31)/w′

0

a12 = (h12 − x′

0h32)/w′

0

a21 = (h21 − y′0h31)/w′

0

a22 = (h22 − y′0h32)/w′

0

tx = x′

0 − (a11x0 + a12y0)

ty = y′0 − (a21x0 + a22y0)

56

Appendix B

Decomposition of a Projective
Transformation

As mentioned in [13], a projective transformation can be decomposed into a chain
of transformations:

H = HSHAHP =

(

sR t
0⊤ 1

)(

K 0
0⊤ 1

) (

I 0
v⊤ υ

)

=

(

A υt
v⊤ υ

)

whereA = sRK + tv⊤, andK is an upper triangular matrix fulfillingdet(K) = 1.
That decomposition is valid as long asυ 6= 0, and is unique as long ass is

chosen positive. The algorithm chosen for this decomposition is describedbelow:

1. if(h33 < 0) H = −H

2. υ = h33

3. v = [h31 h32]
⊤

4. t = 1
υ

[h13 h23]
⊤

5. L = sRK =

(

h11 h12

h21 h22

)

− tv⊤ (L determined from known variables).

6. Writing out the newly acquiredL = sRK , we can set up an equation system:

L =

| |
l1 l2
| |

 = s

| |
r1 r2

| |

(

a b
0 c

)

Here,r i andli are the two columns of the rotation matrix and theL matrix
of the equation above.

{

sr1a = l1
sr1b + sr2c = l2

Using|r i| = 1, we get
sa = |l1|

57

B. Decomposition of a Projective Transformation

and hence

r1 =
l1
sa

continuing, multiplying the second equation of the system to the left byr⊤1 ,
using some properties of the rotation matrix, namely that|r i| = 1 and that
the two columns are orthogonal (i.e.r⊤i r j = 0 wheni 6= j), we get

sb = r⊤1 l2

now, using
scr2 = l2 − sbr1

taking the norm of both sides gives

sc = |(l2 − sbr1)|

and we then also get

r2 =
1

sc
(l2 − sbr1)

and hence the rotation matrix has been determined. We also knows the en-
tries of theK matrix up to scale, but since we know thatdet(K) = ac = 1,
we can determines and the correctK

s =
√

sa sc

K =
1

s

(

sa sb
0 sc

)

All entries in the decomposition have now been determined.

58

Appendix C

Optical Flow Estimation

Construction of optical flow trackers relies on theconstant brightness assumption.
That assumption states that the brightness of any point of a tracked objectshould
remain constant during tracking. Only the positions of the points are allowed to
change. For an individual point with position̄x(t) at timet in an imageI(t), the
constant brightness assumption for a single point can be expressed as (C.1):

dI(x̄(t), t)

dt
= 0 (C.1)

The simplest and most straightforward way to derive the equations necessary for
optical flow tracking does actually not include any equations derived from the
SSD equation (2.1) directly. It does instead involve calculations ofERR (C.2),
the summed squared deviation from the constant brightness equation (C.1) above.
Note that when certain conditions1 are met, the SSD equation (2.1) and theERR
equation (C.2) will give identical values. The weighting functionw(x̄) is inserted
to accommodate for weighting of pixels if needed.

ERR =
∑

all x̄

(

dI(x̄(t), t)

dt

)2

w(x̄) (C.2)

A thoroughly explained derivation of an optical flow tracker for trackingof trans-
lations will be found in the next section, and briefer examples for tracking more
complex movements will be presented in the subsequent sections. [9] and [10] also
contain examples of simple optical flow trackers.

All optical flow trackers in the following sections share the property that
the equations for optical flow tracking was determined by differentiating equa-
tion (C.1), and then putting the result in theERR equation (C.2). Then the minima
of ERR was determined by differentiatingERR with respect to each parameter
to determine, and then equating the resulting equations to zero. Solving the result-
ing equation system would give an approximation of the parameters which would
minimise theERR equation.

1Requirements for ERR equal to SSD: Identical placement of the points used for evaluation of the
sums; Time derivatives evaluated by comparison of first and current intensity for points; Omission of
variableτ which would scaleERR if time between frames not set to1; Use of identical weighting
of pixels in both SSD andERR calculation.

59

C. Optical Flow Estimation

Coordinate Systems

One important property to consider about optical flow trackers is that theyonly can
track small changes of the tracked patch relative to the used reference patch. That
means that the camera image has to be warped using the last known tracked param-
eters into an image close to the reference image before tracking. Then the trackers
resulting correction parameters would need to be warped before they applies to
the patch as seen by the camera. Figure 2.1 (page 6) shows those coordinate sys-
tem transformations together with additional transformations needed if the tracked
patch is downscaled by the tracker.

C.1 Tracking Translations

This is a thoroughly explained derivation of a tracker capable of followingtransla-
tions. Starting by differentiating equation (C.1) yields

dI(x̄(t), t)

dt
=

δI(x̄(t), t)

δx

δx

δt
+

δI(x̄(t), t)

δy

δy

δt
+

δI(x̄(t), t)

δt
(C.3)

Making the following substitutions in the formula above while lettingτ denote the
interval between consecutive frames

δI(x̄(t), t)

δt
≈ I(x̄(t + τ), t + τ) − I(x̄(t), t)

τ
δx

δt
≈ ∆x

τ
δy

δt
≈ ∆y

τ

yields

dI(x̄(t), t)

dt
≈ δI(x̄(t), t)

δx

∆x

τ
+

δI(x̄(t), t)

δy

∆y

τ
+

I(x̄(t + τ), t + τ) − I(x̄(t), t)

τ
(C.4)

Now an assumption that unfortunately limits trackable movements to less then
one pixel (unless downscaling or excessive blurring is used) has to bedone. It
involves assuming that the intensities at frameI(t) is close to the intensities in
frameI(t0). This will be true as long as the tracker did not loose the tracked object
in the last tracking iteration, and the brightness of the tracked points remained
constant. The consequences of the assumption is thatI(x̄(t), t) ≈ I(x̄(t0), t0),
δI(x̄(t),t)

δx
≈ δI(x̄(t0),t0)

δx
, and thatδI(x̄(t),t)

δy
≈ δI(x̄(t0),t0)

δy
. That makes it possible to

rewrite equation (C.4) as

dI(x̄(t), t)

dt
≈ δI(x̄(t0), t0)

δx

∆x

τ
+

δI(x̄(t0), t0)

δy

∆y

τ
+

I(x̄(t + τ), t + τ) − I(x̄(t0), t0)

τ
(C.5)

60

C. Optical Flow Estimation

Introducing some notations to make the expressions more compact

Ix =
δI(x̄(t0), t0)

δx

Iy =
δI(x̄(t0), t0)

δy

I = I(x̄(t0), t0)

Iwarp = I(x̄(t + τ), t + τ)

w = w(x̄) (C.6)

makes it possible to write theERR equation (C.2) as

ERR =
1

τ

∑

all x̄

(Ix∆x + Iy∆y + Iwarp − I)2 w (C.7)

To find the minimum ofERR, one has to differentiate it with respect to the vari-
ables to determine, namely∆x and∆y, and then set the resulting derivatives to
zero as in equation (C.8) . The variableτ was also set to1 to facilitate comparison
with results derived from the SSD equation.

δERR

δ∆x
= 2

∑

all x̄

Ix (Ix∆x + Iy∆y + Iwarp − I)w = 0

δERR

δ∆y
= 2

∑

all x̄

Iy (Ix∆x + Iy∆y + Iwarp − I)w = 0 (C.8)

In the two equations above, only(∆x,∆y) is unknown, and everything except
Iwarp was known when the tracker was constructed. One could rearrange those
equations to

∑

all x̄

(

w

[

IxIx IxIy

IyIx IyIy

] [

∆x
∆y

])

=
∑

all x̄

(

w

[

Ix (I − Iwarp)
Iy (I − Iwarp)

])

(C.9)

which also can be expressed as

AT WAc = AT Wb (C.10)

by selecting

A =

| |
Ix Iy

| |

W =

� 0

w
0 �

c =

[

∆x
∆y

]

b =

|
(I − Iwarp)

|

61

C. Optical Flow Estimation

The movementc = (∆x,∆y)T can easily be solved as
[

∆x
∆y

]

= c =
(

AT WA
)−1

AT Wb

The residual, which is the change of intensity which could not be explained by the
solved parameters, can be computed as

r =
√

Wb − (
√

WA)c

From the residual, it is easy to calculateERR, which is the summed squared devi-
ation from the constant brightness equation:

ERR = r
T
r

If it instead would be more interesting to calculate the SSD, that could be done in
two slightly different ways.

Firstly, assuming that all pixels in the tracked patch on average would con-
tribute with the same amount to the SSD, it could be evaluated as
SSD = r

T
r/(

∑

w). That method has the side effect that errors further away
from the centre of the patch would not contribute as much to the SSD as errors
close to the centre of the patch (with Gaussian weighting). Whether that is good or
bad is difficult to determine, but as the errorERR which the tracker minimises is
directly proportional to this way of calculating the SSD, it could be considered an
advantage.

Secondly, it is also possible to determine the SSD by ignoring weighting at all,
when the residual is calculated asr = b − Ac. That would make the calculation
as simple asSSD = r

T
r. That result could get normalized by dividing it by the

number of pixels in the tracked patch if wanted.

Solution steps

Here, the precalculated matrices are(AT WA)−1AT W ,
√

WA, and
√

W . Note
thatW is diagonal, and the reduced number of computations needed when multi-
plying it with other matrices is used in the table. N in the tables is the total number
of pixels in the tracked patch.
Calculation multiplications additions subtractions
b = (I − Iwarp) N
c = ((AT WA)−1AT W)b 2N 2N − 2

r =
√

Wb − (
√

WA)c 3N N N

total sum (excluding residual): 2N 2N − 2 N
total sum (including residual): 5N 3N − 2 2N

It is quite notable that only one subtraction, two multiplications, and two additions
per pixel are needed to solve for translation using optical flow.

C.2 Tracking Affine Transformations

In this section, equations for tracking an affine transformation are derived. Incre-
mental changes to the affine transformation is described by two functions,f andg,

62

C. Optical Flow Estimation

such that the warping of points(u, v) into (u′, v′) are described by the following
equation:

[

u′

v′

]

=

[

f(a11, a12, tu, u, v)
g(a21, a22, tv, u, v)

]

=

[

a11u + a12v + tu
a21u + a22v + tv

]

(C.11)

Note thatu andv denotes affine positions relative to the centre of the tracked patch
in the initial frame. Most often the patch in the initial frame is considered to have
an identity transformation, such thatu andv coordinates coincides withx andy
coordinates relative to the centre of the tracked patch. That would in turn make tu
andtv relative to the(x, y) coordinate system as well.

Also note that the process used are going to solve for incremental changes,
as the optical flow algorithm always compares the current frame with the frame
just before the current frame. (Actually, assuming that the neither the tracker lost
track of the target, nor that the constant brightness assumption broke, theframe just
before the current frame could for our intents and purposes be considered identical
to the very first frame).

Making the assumptions required to get equation (C.5), and using the notations
introduced as equations (C.6) makes it possible to writeERR as

ERR =
1

τ

∑

all x̄

(R + Iwarp − I)2 w (C.12)

whereR =
(

Iu∆tu + Iv∆tv + uIu∆a11 +

vIu∆a12 + uIv∆a21 + vIv∆a22

)

Here,Iu, Iv coincides withIx, Iy if the patch in the initial system had its(u, v)
system coinciding with the(x, y) coordinate system.

Settingτ to 1 and locating minimum ofERR by derivating (C.12) with respect
to the parameters to find yields this equation system:

δERR

δ∆tu
= 2

∑

all x̄

Iu (R + Iwarp − I)w = 0

δERR

δ∆tv
= 2

∑

all x̄

Iv (R + Iwarp − I)w = 0

δERR

δ∆a11
= 2

∑

all x̄

uIu (R + Iwarp − I)w = 0

δERR

δ∆a12
= 2

∑

all x̄

vIu (R + Iwarp − I)w = 0

δERR

δ∆a21
= 2

∑

all x̄

uIv (R + Iwarp − I)w = 0

δERR

δ∆a22
= 2

∑

all x̄

vIv (R + Iwarp − I)w = 0

63

C. Optical Flow Estimation

This system can be written shorter as

AT WAc = AT Wb (C.13)

where

A =

| | | | | |
Iu Iv uIu vIu uIv vIv

| | | | | |

W =

� 0

w
0 �

c =

∆tu
∆tv
∆a11

∆a12

∆a21

∆a22

b =

|
(I − Iwarp)

|

and the solution would simply be

c = (AT WA)−1AT Wb

where(AT WA)−1AT W can be precomputed. The residual, which is the change of
intensity which could not get explained by the solved parameters, can be computed
as

r =
√

Wb − (
√

WA)c

From the residual, it is easy to calculateERR, which is the summed squared devi-
ation from the constant brightness assumption:

ERR = r
T
r

Solution steps

Here, the precalculated matrices are(AT WA)−1AT W ,
√

WA, and
√

W . Note
thatW is diagonal, and the reduced number of computations needed when multi-
plying it with other matrices is used in the table. N in the tables is the total number
of pixels in the tracked patch.
Calculation multiplications additions subtractions
b = (I − Iwarp) N
c = ((AT WA)−1AT W)b 6N 6N − 6

r =
√

Wb −
√

WAc 7N 5N N

total sum (excluding residual): 6N 6N − 6 N
total sum (including residual): 13N 11N − 6 2N

64

C. Optical Flow Estimation

C.3 Tracking Affine Transformations (two step approach)

Tracking of affine transformations using the steps in the previous section are not
considered to be the best way of tracking affine transformations in real life. [9]
describes a different approach, where displacement and rotation aredetermined in
a first step, before the other parameters are determined. The reason behind that is
very simple.

During normal circumstances, displacement and rotation of the tracked object
changes more often and faster then scaling and shear of the same object. At the
same time, determination of scaling and shear suffer more easily from lack of de-
tails in the tracked patch, making them more prone to contain errors. If all the
affine parameters were solved in one step, the errors introduced in the scaling and
shear parameters would automatically introduce corresponding errors in the dis-
placement and rotation parameters. To promote a better solution of displacement
and rotation, the solution was split into two steps. The first step only solves for
displacement and rotation, while the second step only solves for scaling andshear.

Construction of this two-step tracker begins by looking at the equation for this
type of affine transformation. Normally the incremental transformation would be
described by:

[

u′

v′

]

= ∆A

u
v
1

 , where∆A =

[

∆a11 ∆a12 ∆tu
∆a21 ∆a22 ∆tv

]

This time, we consider rotation, scaling and shear separately. RotationR can dur-
ing small incremental updates be approximated linearly by∆R:

∆R =

[

0 α 0
−α 0 0

]

, whereα ≈ 0

Incremental scaling and shear could in turn be described as

∆S =

[

su γ 0
0 sv 0

]

, wheresu ≈ 1, sv ≈ 1, andγ ≈ 0

And incremental translation could be described as

∆t =

[

0 0 tu
0 0 tv

]

The incremental affine transformation described by∆R + ∆S + ∆t could thus
be described by two functions,f andg, such that the warping of points(u, v) into
(u′, v′) are described by the following equation:

[

u′

v′

]

=

[

f(u, v, α, su, γ, tu)
g(u, v, α, sv, tv)

]

=

[

suu + (α + γ)v + tu
−αu + svv + tv

]

(C.14)

DifferentiatingI(u′, v′) = I(f(u, v, α, su, γ, tu), g(u, v, α, sv, tv)) just as in equa-
tion (C.3), and using the notations introduced in equations (C.6) yields

dI

dt
=

dI(f(u, v, α, su, γ, tu), g(u, v, α, sv, tv))

dt
≈

65

C. Optical Flow Estimation

1

τ
Iu (su∆u + (α + γ)∆v + v∆α + u∆su + v∆γ) +

1

τ
Iv (−α∆u + sv∆v − u∆α + v∆sv) +

1

τ
(Iwarped − I) (C.15)

Here,Iu, Iv again coincides withIx, Iy if the patch in the initial system had its
(u, v) system coinciding with the(x, y) coordinate system.

Assuming small differential changes, we can setsu = 1, sv = 1, α = 0 and
γ = 0 to linearise the system around that point. Then inserting (C.15) into the
ERR equation (C.2) while settingτ to 1 yields:

ERR =
∑

all x̄

(

Iu(∆u + v∆α + u∆su + v∆γ)+

Iv(∆v − u∆α + v∆sv) +

(Iwarped − I)
)2

w(x̄) (C.16)

Differentiating equation (C.16) with respect to each parameter to solve for yields
this system for minimizingERR.

AT WAc = AT Wb (C.17)

where

A =

| | | | | |
Iu Iv (vIu − uIv) uIu vIv vIu

| | | | | |

W =

� 0

w
0 �

c =

∆tu
∆tv
∆α
∆Su

∆Sv

∆γ

b =

|
(I − Iwarp)

|

If the system is solved directly,ERR will be minimised, but then less then optimal
values are more likely to be chosen for displacement and rotation. The reason
is that scaling and shear are more prone to be solved slightly incorrect. When
solving for those parameters and for displacement and rotation at the same time,
the errors in scaling and shear would induce corresponding errors in displacement
and rotation, thereby degrading their accuracy.

66

C. Optical Flow Estimation

By solving the equation system in two steps, the accuracy of the displacement
and rotation parameters can get enhanced. The first step solving only for displace-
ment and rotation:

LT WLd = LT Wb , resulting in d = (LT WL)−1LT Wb

where

L =

| | |
Iu Iv (vIu − uIv)
| | |

d =

∆u
∆v
∆α

Then the second step solves for scaling and shear while using the result from the
first step above:

RT WLd + RT WRe = RT Wb

resulting in e = (RT WR)−1RT W (b − Ld)

where

R =

| | |
uIu vIv vIu

| | |

e =

∆su

∆sv

∆γ

Solution steps

Here, the precalculated matrices are(LT WL)−1LT W , L, (RT WR)−1RT W , R,
and

√
W . Note that

√
W is diagonal, and the reduced number of computations

needed when multiplying it with other matrices is used in the table. N in the tables
is the total number of pixels in the tracked patch.
Calculation multiplications additions subtractions
b = (I − Iwarp) N
d = (LT WL)−1LT Wb 3N 3N − 3
M = Ld 3N 2N
e = (RT WR)−1RT W (b − M) 3N 3N − 3 N

r =
√

W (b − M − Re) 4N 2N 2N

sum (only translation and rotation): 3N 3N − 3 N
total sum (excluding residual): 9N 8N − 6 2N
total sum (including residual): 13N 10N − 6 4N

Comparing the number of operations required for tracking between this tracker, and
the other affine tracker in section C.2 reveals almost no difference in the number of
computations when both the solution and the residual is computed. If the residual
is not needed, the other tracker does however have noticeably fewer operations.
Another interesting property made clear in the table is the low number of operations
needed when solving for translation and rotation only.

67

C. Optical Flow Estimation

C.4 Tracking Perspective Transformations

It is possible to extend optical flow tracking to be able to handle perspectivetrans-
formations as well, as will be demonstrated in this section. A perspective transfor-
mation could be described by

[

u′

v′

]

=

[

f(m11, m12, m13, m31, m32, m33, u, v)
g(m21, m22, m23, m31, m32, m33, u, v)

]

=

[

(m11u + m12v + m13)/(m31u + m32v + m33)
(m21u + m22v + m23)/(m31u + m32v + m33)

]

(C.18)

Note thatu andv denotes affine positions relative to the centre of the tracked patch
in the initial frame. Most often the patch in the initial frame is considered to have
an identity transformation, such thatu andv coordinates coincides withx andy
coordinates relative to the centre of the tracked patch.

Also note that the nine entriesmij only can be determined up to an unknown
scale factor, making it possible to fix entrym33 to 1, while scaling the other entries
accordingly (this requires thatm33 6= 0, if that can not be expected, an alternative
would be to normalizeM such thatdet(M) = 1).

Making the assumptions needed earlier to get equation (C.5), and using nota-
tions introduced in equations (C.6) makes it possible to writeERR as

ERR =
1

τ

∑

all x̄

(R + Iwarp − I)2 w (C.19)

where

R = Iu

(1

C3
(u∆m11 + v∆m12 + ∆m13)

+
C1

C3
(u∆m31 + v∆m32

)

+Iv

(1

C3
(u∆m21 + v∆m22 + ∆m23)

+
C2

C3
(u∆m31 + v∆m32

)

(C.20)

Here,Iu, Iv again coincides withIx, Iy if the patch in the initial system had its
(u, v) system coinciding with the(x, y) coordinate system. Also note that equa-
tion (C.20) above contains these abbreviations:

C1 = −(m11u + m12v + m13)/C3

C2 = −(m21u + m22v + m23)/C3

C3 = m31u + m32v + 1

wheremij at initialisation usually would correspond to an identity matrix. Setting
τ to 1 and locating minimum ofERR by derivating (C.19) with respect to the
parameters to find yields this equation system:

δERR

δ∆m11
= 2

∑

all x̄

Iu

C3
u (R + Iwarp − I)w = 0

68

C. Optical Flow Estimation

δERR

δ∆m12
= 2

∑

all x̄

Iu

C3
v (R + Iwarp − I)w = 0

δERR

δ∆m13
= 2

∑

all x̄

Iu

C3
(R + Iwarp − I)w = 0

δERR

δ∆m21
= 2

∑

all x̄

Iv

C3
u (R + Iwarp − I)w = 0

δERR

δ∆m22
= 2

∑

all x̄

Iv

C3
v (R + Iwarp − I)w = 0

δERR

δ∆m23
= 2

∑

all x̄

Iv

C3
(R + Iwarp − I)w = 0

δERR

δ∆m31
= 2

∑

all x̄

(

IuC1

C3
u +

IvC2

C3
u

)

(R + Iwarp − I)w = 0

δERR

δ∆m32
= 2

∑

all x̄

(

IuC1

C3
v +

IvC2

C3
v

)

(R + Iwarp − I)w = 0 (C.21)

This system can be written shorter as

AT WAc = AT Wb (C.22)

where

a1(x) = uIu(x)/C3(x)

a2(x) = vIu(x)/C3(x)

a3(x) = Iu(x)/C3(x)

a4(x) = uIv(x)/C3(x)

a5(x) = vIv(x)/C3(x)

a6(x) = Iv(x)/C3(x)

a7(x) =

(

IuC1

C3
u +

IvC2

C3
u

)

a8(x) =

(

IuC1

C3
v +

IvC2

C3
v

)

A =

| | | | | | | |
a1 a2 a3 a4 a5 a6 a7 a8

| | | | | | | |

W =

� 0

w
0 �

69

C. Optical Flow Estimation

c =

∆m11

∆m12

∆m13

∆m21

∆m22

∆m23

∆m31

∆m32

b =

|
(I − Iwarp)

|

and the solution would simply be

c = (AT WA)−1AT Wb

The residual could be calculated as well, and is equal to

r =
√

W (b − Ac)

Solution steps

Here, the precalculated matrices are(AT WA)−1AT W , A, and
√

W . Note that√
W is diagonal, and the reduced number of computations needed when multiply-

ing it with other matrices is used in the table. N in the tables is the total number of
pixels in the tracked patch.
Calculation multiplications additions subtractions
b = (I − Iwarp) N
c = (AT WA)−1AT Wb 8N 8N − 8

r =
√

W (b − Ac) 9N 7N N

total sum (excluding residual): 8N 8N − 8 N
total sum (including residual): 17N 15N − 8 2N

Issues

The abbreviationsCi(u, v) used while creating the precalculated matrices need
some discussion. Since eachCi(u, v) contains elements from the homography,
they add yet another approximation to the tracker. During tracking their values
depend on the pose of the tracked plane and they are not constant as assumed by
the construction of the tracker.

Analysing the problem further revealed that the influence ofC3 can be regarded
as a weighting, which would not affect the tracking except for the few pixels where
the current sign ofC3(u, v) differ from the sign of the initialC3(u, v). The real
issue is thatC1 andC2 affects the tracker, but mainly them31 andm32 parameters.
The problem is not visible while observing a tracker in progress, but mostlikely it
affects at least the convergence rate of these trackers.

In practice, the current tracker works well when the tracked surfaceis not ro-
tated away from the camera too much. This approximation is however not good

70

C. Optical Flow Estimation

enough in some applications when the tracked surface is rotated up to 90 degrees
relative to the camera. There are three ways to handle this. The chosen option
was to do nothing. Alternatively, the precalculated matrices of the tracker can be
recalculated whenever the surface has been angled more then some constant angle
away from the position which was used the last time the matrices was updated.
That would count as a quick and dirty fix and should preferably be avoided. The
third way of handling these elements is by completely redesigning the tracker, and
possible alternatives may be found in both [11] and [1].

C.5 Intuitive Description

Earlier in this chapter, relationships necessary for calculating optical flowwas de-
rived. Those derivations were focused entirely at finding solutions that would min-
imise the deviations from the constant brightness assumption. As a consequence,
the resulting equations for optical flow tracking were justified only mathematically.

To make up for the lack of intuitiveness in the mathematical derivations, this
section is going to try to intuitively describe how optical flow tracking works by
providing some examples. To avoid making this example too cluttered with details,
the translation tracker from section C.1 is going to be used as an example. That
tracker is tracking only two parameters,∆x and∆y. Expanding the results for
any number of parameters is however straightforward. The system to solve for
optical flow was described in equation (C.9). That equation system is repeated
here without weighting for reference:

[∑

IxIx

∑

IxIy
∑

IyIx

∑

IyIy

] [

∆x
∆y

]

=

[∑

Ix (I − Iwarp)
∑

Iy (I − Iwarp)

]

(C.23)

Each individual summation is performed for all pixelsx̄ of the tracked patch,I is
the original patch, andIwarp is the image obtained by warping the current image us-
ing the last known tracker parameters (x and y).Ix andIy is the x and y-derivatives
of the original patch, and can be considered to be two motion templates.

One Parameter

If the tracker was supposed to only track translations in the x-direction, theequation
above could be written as

∆x
∑

IxIx =
∑

Ix(I − Iwarp) (C.24)

That equation above could be visualised for particular cases, such as the one in
figure C.1 where the warped image was translated one pixel to the right. Putting
the images from figure C.1 into equation (C.24) would result in

∗ ∆x = ∗

71

C. Optical Flow Estimation

(a) I (input image) (b) Ix (x-derivative) (c) Iy (y-derivative)

(d) Iwarp (image trans-
lated 1 pixel to the right)

(e) I−Iwarp (change in in-
tensity)

(f) Intensity key

Figure C.1: ImageI and derivatives, andIwarp which is translated one pixel in
positive x-direction.

Observe that unpadded convolution (∗) of two images is identical to the sum-
mation of the product of pixels at the same position in both images. Performing
that convolution yields

292 612.5∆x = 292 612.5 =⇒ ∆x = 1

which agrees with the one pixel displacement ofIwarp. Looking atI − Iwarp for
fractional displacements in figure C.2 makes it quite clear that the resulting∆x
is directly proportional to the displacement in the image, as the size of the areas
involved in the convolutions is directly proportional to the displacement.

When central difference is used to calculate derivatives,∆x would get values
directly proportional to the displacement for translations up to one pixel. Fortrans-
lations between one and two pixels, the calculated∆x would have the right sign,
but not the right magnitude. For translations of two pixels or more, the calculated
∆x would be completely uncorrelated to the translation in the image, unless the
image contain gradients spanning larger areas.

The parameter
∑

IxIx from equation (C.24) is a constant, originating from the
formal derivation of this particular optical flow tracker. That constant ensures as
this example showed, that the solved optical flow parameter is close to identicalto
the motion of the tracked object. It is known that a motion template multiplied by
the magnitude of its parameter would equal the change in intensity caused by that
motion (with small variations depending on how the derivatives were calculated).
That would imply that

Ix∆x ≈ (I − Iwarp) (C.25)

Multiplying each pixel byIx in the equation above, followed by summing both
sides would yield equation (C.24), thereby verifying

∑

IxIx as the correct con-
stant.

72

C. Optical Flow Estimation

(a) displacement = 1.0 (b) displacement = 0.5 (c) displacement = 0.25

(d) displacement = 0 (e) displacement = -0.5 (f) Ix

Figure C.2: I − Iwarp for a few different displacements. The outlined regions is
the part shared withIx. Only that shared part contributes to

∑

Ix(I − Iwarp) in
equation (C.24).

An observant reader might assume that the motion templateIx (figure C.1(b))
has to be identical toI − Iwarp (figure C.1(e)). The deviation between those two
images derive from the fact that a central difference was used to calculateIx. To
maintain correct results from algorithms, the central difference must be acquired
by convolving the input image with the kernel

[

0.5 0 −0.5
]

, as the created
motion template otherwise would correspond to a two pixel displacement.

Two Parameters

Back to the example, one sooner or later is faced by solving for more than one
parameter. Assuming that a second parameter could be calculated in the same
manner as a single parameter, that would give us these two equations for calculating
both parameters:

(
∑

IxIx)∆x =
∑

Ix(I − Iwarp)
(
∑

IyIy)∆y =
∑

Iy(I − Iwarp)

This solution is going to work poorly, or not at all depending on the trackedpatch.
The problem is that motions described by any single parameter will introduce

errors into the calculation of the other parameters. In our case, the extension of
the tracker to track∆y would result in incorrect evaluations of∆x. That problem
is illustrated below where∆x is calculated for a patch translated one pixel in the
positive y-direction. The wanted result would be no change in∆x, but there was a
big change. Figure C.3 shows intermediate values for a translation in y-direction.

Here equation (C.24) was used to calculate∆x without knowledge about y-
translations for the patch in figure C.3. That patch was translated 1 pixel in the
positive y-direction.

73

C. Optical Flow Estimation

(a) I (input image) (b) Ix (x-derivative) (c) Iy (y-derivative)

(d) Iwarp (image trans-
lated 1 pixel to the right)

(e) I−Iwarp (change in in-
tensity)

(f) Intensity key

Figure C.3: ImageI and derivatives, andIwarp which was translated one pixel in
positive y-direction.

∗ ∆x = ∗

Performing the calculation above yields

292 612.5∆x = −130 050 =⇒ ∆x ≈ 0.44

As can be seen,∆x would not equate to zero, as the undetermined motion in y-
direction interacts with the motion template used to determine motion in the x-
direction.

Making the assumption that the true translation in y-direction would be known,
one would face the problem of determining the influence of a known
y-displacement on the calculated value of the x-direction. The equation
system (C.23) (from the theory in section C.1) holds the key to these interdepen-
dencies. The relevant part is repeated here for reference:

∆x
∑

IxIx + ∆y
∑

IxIy =
∑

Ix (I − Iwarp)

Still pretending that we know∆y, we could directly calculate∆x from the equa-
tion above:

∆x
∑

IxIx =
∑

Ix ((I − Iwarp) − Iy∆y)

There is a simple way to think of that correction. It simply states that you could
subtractIy∆y from any difference image to cancel out distortions caused by the
motion ∆y. The same holds for any other motion template multiplied by its pa-
rameter as long as the motion compensated for is in the sub-pixel range.

74

C. Optical Flow Estimation

Another understanding of correlation could be found by looking at the meaning
of the factor

∑

IxIy. Evaluating that for the triangle example used throughout this
section yields:

∑

IxIy = ∗ =
∑

= −130 050

As seen in the image above,
∑

IxIy leaves us with a large negative number
in this case, which occurred mostly because of a large common diagonal portion
where the motion templates had opposite values. Any response in the difference
imageI − Iwarp would affect both parameters in that common region, regardless
of which underlying motion that caused the response.

Setting up an equation system for simultaneous solution of∆x and∆y makes
it possible to calculate a solution which is compensated for dependencies between
the parameters. For that system, it is preferable to keep the parameters located as
in equation (C.23).

[∑

IxIx

∑

IxIy
∑

IyIx

∑

IyIy

] [

∆x
∆y

]

=

[∑

Ix (I − Iwarp)
∑

Iy (I − Iwarp)

]

All parameters from the equation above should now be familiar:
∑

IxIx - purely a constant scaling factor
∑

IxIy - constant factor which compensates for mutual interference between
motion templates.

∆x and∆y - parameters to calculate

Ix Motion template for motions in x-direction

Iy Motion template for motions in y-direction

I − Iwarp difference image

75

Appendix D

Notes about NOMAN

NOMAN is a shared code repository for work at theComputer Vision and Active
Perception Laboratory(CVAP) and theCentre for Autonomous Systems, both part
of the Royal Institute of Technology(KTH). NOMAN mostly contains reusable
C++ classes, and is a valuable resource. During my usage of NOMAN, some of
those classes has been expanded with new features or improved in other ways.

The following sections include suggestions for improvements to NOMAN. I
suggest that at least the critical changes should get merged into the NOMAN repos-
itory. Besides that, a large portion of code developed while working on this thesis
(see chapter 6) could also be considered suitable for inclusion in NOMAN.

D.1 ImageShow2

This class suffers from a severe bug, which leads to memory corruption (and seg-
mentation faults). The constructor for the class sets the dimension of the image to
320x240 pixels and allocates the necessary amount of memory. If an image larger
then 320x240 is drawn, a function for resizing the visible window is called, but its
memory is not enlarged to accommodate larger images. Additionally, the initially
allocated memory is not freed on destruction of the class.

Besides the bugs, I added another function that seemed useful. I modifiedthe
class to make it possible to query for mouse clicks in a non-blocking manner by
always enabling ButtonPress events, and polling for them in the new checkPointer
function.

Those modifications can be found in the filesImageShow2_mod.cc and
ImageShow2_mod.hh, which probably should get merged into the NOMAN
tree.

D.2 CASMatrix

One of the most frequently used matrix operation during this work was the matrix
multiplication operator. The matrix multiplication function however suffers from
two different performance bottlenecks, one in the multiplication algorithm, and
another caused by temporary objects. Luckily, both bottlenecks can be corrected.

76

D. Notes about NOMAN

D.2.1 Multiplication

The first problem lies in the implemented multiplication routine:

//current multiplication loop in CASMatrix
CASMatrix res(r1.q_rows(), rhs.q_cols());
res = 0.;

for(i = 0 ; i < r1.q_rows() ; i++)
for(j = 0 ; j < rhs.q_cols() ; j++)

for(int k = 0 ; k < r1.q_cols() ; k++)
res.elem[i][j] += r1.elem[i][k] * rhs.elem[k][j];

When observing the code above, it is clear that the index variable k changes in
each iteration, and that forcesrhs.elem[k][j] to access memory in a non-
linear manner. Accessing memory non-linearly is never a good idea according
to [6] [19], [18] and my own measurements. If linear access of data wouldbe used
instead, special hardware prefetch circuits1 would move data from the slow main
memory into fast cache memory even before the microprocessor could knowthat
it might need the data.

The performance of the multiplication routine was improved greatly by chang-
ing the indexes such that linear access of all the three matrices is achieved.

//suggested multiplication loop in CASMatrix
res = 0.;
for(i = 0 ; i < r1.q_rows() ; i++)
for(int k = 0 ; k < r1.q_cols() ; k++)

for(j = 0 ; j < rhs.q_cols() ; j++)
res.elem[i][j] += r1.elem[i][k] * rhs.elem[k][j];

Additionally, it is possible to improve performance slightly more for larger matri-
ces by avoiding using two-dimensional arrays in the innermost loop (see
SMatrix_implementation.hh). It might not be preferably to try and op-
timise CASMatrix too much, as the results could prove to be architecture depen-
dent. It should be noted that the majority of the time used when multiplying small
matrices lies in the creation of temporary objects, and that that issue also should
be addressed to achieve the best performance possible. For reference, some com-
parisons between the uncompleted SMatrix class and the CASMatrix class canbe
found in section 6.7.1.

D.2.2 Temporary Objects

When using CASMatrix objects to calculate expressions such asA = b*c;, that
code would generate a temporary object containing the result of the multiplication
before the results are copied intoA. The longer the expression, the more temporary
variables would be generated. The temporary variables add a significantoverhead
to calculations when the matrices are small. Multiplying two 3x3 matrices for
instance uses less then one third of the time for the multiplication – the majority of

1Early P4 microprocessors had four prefetch units, allowing an absolutemaximum of four differ-
ent arrays to be prefetched simultaneously when they are all accessedlinearly.

77

D. Notes about NOMAN

the time is eaten up by creating, copying and destroying the temporary variable. If a
simpler operation than matrix multiplication is considered, the proportion between
time eaten up by the temporary variable and useful processing time would be much
larger.

The effect of bypassing the use of a temporary variable can roughly beseen by
comparing the two rightmost columns in table 6.1 on page 38. Even though that
data is not for CASMatrix, the effects should be similar.

There exists a way to get rid of temporary variables. The use of common arith-
metic expressions could be replaced by calling corresponding temporary-free func-
tions. As an example,dest=a*b; could be evaluated by calling the temporary-
free mul_and_assign(CASMatrix& dest, const CASMatrix& a,
const CASMatrix& b);. Even if only the most common expressions (such
asA=b*c; A=b+c; A=b-c;) would be implemented directly, it would lead to
a large performance increase when small matrices are used.

The addition of a large number of strangely named functions would however
make it difficult for users to use the class efficiently. Luckily, there is a wayaround
that through the use of template meta programming. If lazy evaluation2 were used
as described in [16], the compiler would translate arithmetic expressions directly
into calls to the appropriate temporary-free functions. Remaining unhandledarith-
metic expressions would get their sub expressions evaluated as far as possible with-
out temporary variables. The compiler would not resort to using overloaded arith-
metic functions (which might use temporary objects) until the remaining expres-
sion cannot be handled by any specialized temporary-free function.

I would presently not recommend the implementation of a scheme for remov-
ing temporary objects because of the added complexity. I do however see aneed
for knowledge about this issue, as some (like myself) happily started using the
convenient CASMatrix class without too many thoughts on possible performance
penalties.

D.2.3 Using Optimised Libraries

I would like to draw a little attention to the fact that both AMD and Intel provides
highly optimised versions of BLAS3, which together with LAPACK4 would be
suitable for performing more of the functions of CASMatrix. There also exists
efforts such as ATLAS5, which target more architectures as well.

Previously, I would have stated that it would not be a god idea to include de-
pendencies on many additional packages into NOMAN. But currently, bothBLAS
and LAPACK is needed to perform singular value decompositions, and I hope the
maintainers of CASMatrix are thinking about either removing those library depen-
dencies, or are thinking about using the optimised libraries to improve performance
in other parts of the class as well.

2also known as closure objects
3Basic Linear Algebra Subprograms
4Linear Algebra PACKage
5Automatically Tuned Linear Algebra Software

78

D. Notes about NOMAN

D.2.4 Optimisation Flag

Currently, no optimisation is enabled when compiling any of the functions in
NOMAN/src/Math into the library libMath. I would suggest that-O2 should
be enabled by default. Compiling CASMatrix with optimisations and using an
improved multiplication routine would result in approximately ten times the per-
formance for matrix multiplications.

The only reason against using optimisation might be that enabling-O2 could
make debugging of classes using CASMatrix more difficult.

Another solution could be to define a few of the mostly used functions in the
h-file. Then those functions would be optimised in the same way as any other
application which depends on CASMatrix. It would pose a problem to selectwhich
functions to include in the h-file, and only slow commonly used functions (with
little code) would be best suited for inclusion (unless everything is moved into the
h-file).

D.3 Resolving Compilation Issues with gcc 4.4.1 and FC6

This list might not be complete, but have some notes about compiling and using
NOMAN with newer compilers and libraries.

D.3.1 libMath.so

Building this library was not straightforward because of newly added dependencies
to the libblas-3, liblapack and libg2c libraries. More recent GCC compilers (most
probably from 4.x.x and later) ship with libgfortran instead of libg2c, which made
it necessary to edit “NOMAN/src/Math/Makefile” to reflect those changes.
It would be nice if the necessary tests could be performed by a configurescript.

D.3.2 SELinux

As SELinux has started to be common in many distributions, it is necessary to
know how to run NOMAN if SELinux is enabled. If the message “Error: cannot
restore segment prot after reloc: Permission denied” gets displayed when trying to
run certain NOMAN applications, the “Memory Protection” policy for SELinux
would have to be changed to “Allow all unconfined executables to use libraries
requiring text relocation that are not labeled textrel_shlib_t”. It should also be
possible to change the security context for the libraries built by NOMAN by issu-
ing “chcon -t textrel_shlib_t NOMAN/lib/*.so”. Both ways should
make it possible to use NOMAN together with SELinux.

D.3.3 V4L2Grabber

This class relied on the obsolete define HAVE_V4L2 to get the preprocessor to
generate valid code. The code would not compile without HAVE_V4L2, so it
would be preferable to modifyV4L2Grabber.cc to simply define HAVE_V4L2
for those kernels (2.6.18 or later) that needs it:

79

D. Notes about NOMAN

//Since current kernels don not have HAVE_V4L2 defined any more,
//and V4L2 is included in the kernel source
//see "http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.18"
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 18)
#define HAVE_V4L2
#endif

80

Appendix E

Line Tracking and Detection

During the initial phase of this work, one of the goals involved integrating a vision
part into a human machine collaborative system (HMCS). The environment where
the HMCS was going to operate would include visual clues in the form of lines
hinting preferred tool1 paths. That would require detection as well as tracking of
line segments in the vicinity of the tool.

Due to unexpected hardware failure, the HMCS system was never imple-
mented, and line detection and tracking is no longer a goal of this work. Therefore,
the developed line tracker as well as the implemented line detection algorithm are
described in this appendix rather then in the main text of the thesis.

E.1 Line Tracking

The developed line tracking algorithm was based on the edge tracking algorithm
described in [9]. Their edge tracking algorithm is described in the first section, and
latter sections describes how it was extended to allow tracking of lines.

E.1.1 Edge Tracking

One computationally effective and easy to conceptualise way to track edgeswas
described in [9]. Their methodology was to use known information of the edge
(last known position and angle) when estimating position and angle in the current
frame. Thereby, the current frame could be preprocessed to facilitate determination
of the position and angle of the edge. Further on, the current angle of theedge will
be denoted byθt.

If the approximate state of the edge in the input image is known, those param-
eters could be used to rotate the part of the image containing the edge. Then an
almost vertical edge should be found.

Figure E.2 shows the edge in the input image (figure E.1) after rotation byθt−1,
which was the last known angle of the edge. If the rotation since the previous frame
was small, that edge would be almost vertical.

1The tool is attached to a robotic arm, has a mounted camera, and is moved by measuring the
applied force from the user. The applied force would be processed bya computer, which determines
how the robotic arm should be moved.

81

E. Line Tracking and Detection

Figure E.1: Unrotated edge in input image.

Figure E.2: Edge rotated by last known angleθt−1 (preprocessed image).

The purpose of getting a rotated cut-out of the edge, as they did in [9], was to
facilitate the estimation of the state of the edge. The first step is to estimate the
angle of the rotated line as well as its displacement along the normal direction of
the line. After that, a transformation is used to retrieve the angle and position of
the unrotated tracked edge in the input image.

The estimation of parameters for the rotated (almost vertical) edge was in [9]
carried out by first creating two slightly rotated2 images of the rotated cut-out of
the edge (as in figure E.3).

One important step is then carried out in all three images. The purpose of that
step is to determine the position and response of the strongest vertical edgein all
three images. To find vertical edges, one can differentiate the image in the horizon-
tal direction. The differentiated image would contain edge points as either larger
positive or larger negative values (as in figure E.4(b)). To determine theposition
of one vertical edge, one could then sum all columns in the differentiated image,
and the column with the greatest absolute response is the position of the strongest
edge (figure E.4(c)). For increased accuracy, the average positionacquired from
the three differently rotated images is used as the position of the edge.

2shear in just one direction can approximate this rotation

82

E. Line Tracking and Detection

(a) Almost vertical -dϕ (b) Almost vertical (c) Almost vertical +dϕ

Figure E.3: The edge rotated by three different amounts.

(a) I1 (input image) (b) I2 (gradient in x-
direction)

re
sp

on
se

re
sp

on
se

(c) Sum of columns (response). Dot-
ted line shows averaged value, and
peak reveals displacement of line (in
normal direction of the edge)

Figure E.4: Intermediate results during edge tracking

Now that the position of the rotated edge is known, the angle of that edge hasto
be determined as well. This was solved in [9] by using the greatest responses in the
three differently rotated images. By fitting a quadratic curve to these three values
(as in figure E.5), they estimated which angledθ that should give the maximum
response and hence correspond to a completely vertical edge. Knowingthe angle
of the edge and displacement in the normal direction of the edge, one can calculate

83

E. Line Tracking and Detection

−dϕ−dϕ 00 +dϕ+dϕdθdθ
re

sp
on

se
re

sp
on

se

Figure E.5: Interpolation of angle by fitting of a 2’nd degree polynomial to re-
sponses at−dϕ, 0, and+dϕ.

the real angle and position of the edge:

xt

yt

θt

 =

xt−1

yt−1

θt−1

 +

−ds sin(θt−1 + dθ)
ds cos(θt−1 + dθ)

dθ

, whereds = displacement of edge in the normal direction of the edge, anddθ
= deviation in angle. Subscriptst − 1 denotes that those variables are the ones
corresponding to the previous frame.

E.1.2 Investigated Improvements

Three improvements over the implementation in [9] has been investigated: modi-
fying the algorithm to track lines instead of only edges, determining endpoints of
lines, and improving angle estimation. Those improvements are discussed in the
following sections:

Ability to Track Lines

The algorithm described in [9] had to be modified to be able to track lines. The
problem was that summing of columns to determine displacement in the normal
direction of the line would not work reliable. Lines slightly slanted in the inter-
mediate images would sum gradients from both sides of the line as columns of the
image are summed. That results in a response close to zero for the middle of the
line (as figure E.6(a) illustrates).

That can be avoided in a few ways. The gradient image could be preprocessed
in such a way that no cancelling occurs for columns containing both sides ofthe
line. Alternatively, the centre of the line could be considered to be in the middle
between the two peaks in the response with opposite values (figure E.6(b)). That
is however not a good option since all information from the middle of the line will
get lost, and the tracking will be much more susceptible to noise. Increased noise
sensitivity would also occur if the centre of the line was considered to be on either
peak in figure E.6(b) because of the cancellations which would be present.

To avoid increased noise vulnerability, only preprocessing of the gradient im-
age to eliminate cancellation is an option. When only one edge of the line is going

84

E. Line Tracking and Detection

+ −
+ −

+ −
+ −

+ 0 0 0 0 −
(a) Cancellation for middle of
slanted line (when summing
columns of unprocessed gradi-
ent image)

re
sp

on
se

re
sp

on
se

(b) When both edges contribute to the re-
sponse, middle part of line gets cancelled
out (unprocessed x-gradient image).

re
sp

on
se

re
sp

on
se

(c) When only one edge contribute to re-
sponse, response increases dramatically
(values with wrong sign in x-gradient im-
age removed).

gradient

ou
t

(d) Out replaces the role of the gradient to
promote gradients with the right sign and
magnitude. The peak corresponds to mean
gradient in the tracked edge of the line.

Figure E.6: Preprocessing of the x-gradient image could increase the response
significantly for slanted lines.

to be tracked, preprocessing by removing all gradients with the wrong signfrom
the intermediate image could be performed. Better yet would be to only propagate
gradients close to the mean gradient of the tracked edge of the line. Both alterna-
tives would generate responses similar to the one in figure E.6(c). I choseto map
gradients according to figure E.6(d), such that gradients belonging to thetracked
edge of the line is heavily promoted.

The drawback of this solution is that the gradient image has to be computed.
Previously, the operations of summing columns, and taking derivatives could be
interchanged, resulting in a need for taking derivatives of only one row. Now,
derivatives have to be evaluated for all pixels in a box fitted around the line.

Determining Line Extension

Determination of endpoints for line segments was not done in [9], but was imple-
mented here by looking at an image derivated in the normal direction of the line
(as in figure E.7). By summing all rows, it would be possible to determine the
extension of the line. Note that gradients again have to be preprocessed toprevent
cancelling of the line when summing.

This procedure is more sensitive to noise then the procedure used to determine
displacement of the line in its normal direction. Therefore, some restrictions have
been placed on the endpoint determination, such as not allowing endpoints tomove
more then a certain number of pixels in a tracking iteration. It should be noted that
[9] avoided handling of the extension of lines completely, and I currently suggests
that more work should be put into endpoint detection before relying on the method
presented here.

85

E. Line Tracking and Detection

responseresponse

Figure E.7: Determination of endpoints by summing of gradients in normal di-
rection of line (along rows in warped image). Note that the gradient image was
preprocessed to reveal only one side of the line.

There are other ways to determine line extension as well. They should have
been investigated if the visual input to the line tracking algorithm was of such a
nature that endpoint determination could be problematic. One of the simpler can-
didates would be to filter the neighbourhood of the expected endpoint with certain
kernels. Since the direction of the line is known, something similar to Canny Edge
Detection could be performed without having to use any additional rotated versions
of the edge detection kernel. Another alternative might be to put smaller areatrack-
ers on the line edges, tailored to respond to displacement, rotation and scalingonly.
They could be linked to the line tracker, and aid in determining the parameters for
the line. It might actually be possible to use an area tracker to perform the entire
line tracking operation.

Better Estimation of Line Angle

A better estimator for line angle has not been implemented even though some effort
was made at finding one. in spite of that, some of the results was interesting:

−5−5 00 +5+5
angle (deg)angle (deg)

re
sp

on
se

re
sp

on
se

Figure E.8: Typical response versus angle for rotated edge

Intuitively, finding the angle by fitting of a quadratic function for three mea-

86

E. Line Tracking and Detection

surement points seemed like a bad solution. The supposed reason was that the
shape of the response (figure E.8) was too “spiky”. The thought was that it would
be difficult to estimate the maxima of that function knowing only three equally
spaced points.

However, results from simulations using a uniformly distributed angle of the
edge from -2 to 2 degrees revealed that the medium estimation error was only
0.7 degrees (even though the worst case estimation error was 1.15 degrees). That
corresponds to an error of 1.2 (or 2) pixels for a 100 pixel long edge,and that was
considered as good enough since iteratively tracking the line would lead to even
better estimates.

Alternative ways to calculate the angle could be employed, such as splitting
the line into several line segments. That would perform better, as edge centres are
much easier to determine then edge angles.

E.2 Line Detection – Hough Transform

Tracking lines with the procedure outlined above would require the position of
the line to be known in advance. One algorithm designed to locate lines is the
Hough transform[8]. It is a transform which determines the location of line seg-
ments in a binary image by first transforming edge positions(x, y) into all possible
parametrisations for all lines that could pass through that point. In my case the
(ρ, θ) parametrisation is used, withθ ∈ [0, π], andρ ∈ [0, d] (whered = di-
agonal of image). The relation between the(x, y)- and(ρ, θ)-parametrisation is
ρ = −x sin θ + y cos θ.

The main data structure used by the transform is an accumulator, holding the
number of occurrences of possible combinations betweenρ andθ. The size of this
accumulator determines the resolution of the transform. If one would like to detect
lines within a pixel of their true position in an image, one would have to be able
to separate roughlyNρ ≈ d differentρ values, andNθ ≈ π/atan(1/d) differentθ
values (whered =

√

(image width)2 + (image height)2)
The transform stores all possible(ρ, θ)-parameters for all on-pixels in one ac-

cumulator, to make it possible to locate which parametrisations that acquired the
largest amount of votes. Table E.1 below summarizes the number of additions to
the accumulator for some image sizes and presumed ratios of pixels belonging to
lines.

E.2.1 Using 8x8 Patches

Applying the Hough transform on a large image has some limitations. To begin
with, it would perform poorly at finding shorter line segments. Those segments
could easily get masked by noise and other features in the image. At the same
time, the Hough transform by itself will not reveal the extension of the line, requir-
ing scanning along each parametrised line to find the segments constituting lines.
Another limitation is the computational requirements, which even today makes it
less useful for real time processing of video segments.

87

E. Line Tracking and Detection

Table E.1: Number of accumulator inserts for differently sized images and different
amounts of edges.

Image Accumulator Accumulator inserts
Size Nρ Nθ 100% edges 10% edges one edge-pixel

8x8 12 36 2 304 231 36
10x10 15 45 4 500 450 45
50x50 71 222 555 000 55 500 222
80x80 114 355 2 272 000 227 200 355

320x240 400 1 257 96 537 600 9 653 760 1 257
640x480 800 2 513 771 993 600 77 199 360 2 513

Table E.1 shows the rapid increase of computational burden as the algorithmis
used to locate line segments in larger and larger images. Clearly, the algorithm is
not suited for processing of large images directly, and another approach has to be
taken.

My suggestion is to apply the Hough transform on several smaller overlapping
regions, and then merge the detected line segments. That would reduce the amount
of necessary computations dramatically. An algorithm for joining the smaller line
segments from neighbouring 8x8 patches would however have to be devised, and
that has not been implemented in this work. The principle does however sound
simple: join line segments in neighbouring 8x8 patches as long as no endpoints of
lines to be joined deviates longer then some given constant from the new line.

Consider, for example, a subdivision of an area of 80x80 pixels into 181(=
10 ∗ 10 + 9 ∗ 9) smaller 8x8 regions, thereby reducing the worst case number of
inserts to181 ∗ 2 304 = 417 024 (a reduction by the factor 5). In the same way,
the worst case number of inserts could be reduced by a factor of 18 fora region
of 320x240 pixels. Limiting inserts into the accumulator by requiring a similar
direction of the parameterisation compared to the direction of the local gradient
in the image would also reduce the inserts by an additional factor of at least four.
The gain of using gradient directions would not lie directly in the reduced number
of inserts, but rather in the reduced complexity of finding the most valid peakin
the accumulator, and hence finding the corresponding line. In total, the number of
inserts can be reduced by a factor of at least 72 in the 320x240 case – providing
a substantial increase of performance. The factor of avoided inserts for differently
sized images is tabulated in table E.2

88

E. Line Tracking and Detection

Table E.2: Factor of avoided inserts for differently sized images.
Image Size by using by using 8x8 regions

8x8 regions and edge gradient direction
8x8 1.0 4

32x32 2.5 10
64x64 4.5 18
80x80 5.4 22

320x240 18.0 72
640x480 35.4 142

89

TRITA-CSC-E 2007:096
ISRN-KTH/CSC/E--07/096--SE

ISSN-1653-5715

www.kth.se

